You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaic1.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static real c_b5 = 1.f;
  382. /* > \brief \b SLAIC1 applies one step of incremental condition estimation. */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download SLAIC1 + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaic1.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaic1.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaic1.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C ) */
  401. /* INTEGER J, JOB */
  402. /* REAL C, GAMMA, S, SEST, SESTPR */
  403. /* REAL W( J ), X( J ) */
  404. /* > \par Purpose: */
  405. /* ============= */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > SLAIC1 applies one step of incremental condition estimation in */
  410. /* > its simplest version: */
  411. /* > */
  412. /* > Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
  413. /* > lower triangular matrix L, such that */
  414. /* > twonorm(L*x) = sest */
  415. /* > Then SLAIC1 computes sestpr, s, c such that */
  416. /* > the vector */
  417. /* > [ s*x ] */
  418. /* > xhat = [ c ] */
  419. /* > is an approximate singular vector of */
  420. /* > [ L 0 ] */
  421. /* > Lhat = [ w**T gamma ] */
  422. /* > in the sense that */
  423. /* > twonorm(Lhat*xhat) = sestpr. */
  424. /* > */
  425. /* > Depending on JOB, an estimate for the largest or smallest singular */
  426. /* > value is computed. */
  427. /* > */
  428. /* > Note that [s c]**T and sestpr**2 is an eigenpair of the system */
  429. /* > */
  430. /* > diag(sest*sest, 0) + [alpha gamma] * [ alpha ] */
  431. /* > [ gamma ] */
  432. /* > */
  433. /* > where alpha = x**T*w. */
  434. /* > \endverbatim */
  435. /* Arguments: */
  436. /* ========== */
  437. /* > \param[in] JOB */
  438. /* > \verbatim */
  439. /* > JOB is INTEGER */
  440. /* > = 1: an estimate for the largest singular value is computed. */
  441. /* > = 2: an estimate for the smallest singular value is computed. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] J */
  445. /* > \verbatim */
  446. /* > J is INTEGER */
  447. /* > Length of X and W */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] X */
  451. /* > \verbatim */
  452. /* > X is REAL array, dimension (J) */
  453. /* > The j-vector x. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] SEST */
  457. /* > \verbatim */
  458. /* > SEST is REAL */
  459. /* > Estimated singular value of j by j matrix L */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] W */
  463. /* > \verbatim */
  464. /* > W is REAL array, dimension (J) */
  465. /* > The j-vector w. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] GAMMA */
  469. /* > \verbatim */
  470. /* > GAMMA is REAL */
  471. /* > The diagonal element gamma. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[out] SESTPR */
  475. /* > \verbatim */
  476. /* > SESTPR is REAL */
  477. /* > Estimated singular value of (j+1) by (j+1) matrix Lhat. */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] S */
  481. /* > \verbatim */
  482. /* > S is REAL */
  483. /* > Sine needed in forming xhat. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[out] C */
  487. /* > \verbatim */
  488. /* > C is REAL */
  489. /* > Cosine needed in forming xhat. */
  490. /* > \endverbatim */
  491. /* Authors: */
  492. /* ======== */
  493. /* > \author Univ. of Tennessee */
  494. /* > \author Univ. of California Berkeley */
  495. /* > \author Univ. of Colorado Denver */
  496. /* > \author NAG Ltd. */
  497. /* > \date December 2016 */
  498. /* > \ingroup realOTHERauxiliary */
  499. /* ===================================================================== */
  500. /* Subroutine */ int slaic1_(integer *job, integer *j, real *x, real *sest,
  501. real *w, real *gamma, real *sestpr, real *s, real *c__)
  502. {
  503. /* System generated locals */
  504. real r__1, r__2, r__3, r__4;
  505. /* Local variables */
  506. real sine;
  507. extern real sdot_(integer *, real *, integer *, real *, integer *);
  508. real test, zeta1, zeta2, b, t, alpha, norma, s1, s2, absgam, absalp;
  509. extern real slamch_(char *);
  510. real cosine, absest, eps, tmp;
  511. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  512. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  513. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  514. /* December 2016 */
  515. /* ===================================================================== */
  516. /* Parameter adjustments */
  517. --w;
  518. --x;
  519. /* Function Body */
  520. eps = slamch_("Epsilon");
  521. alpha = sdot_(j, &x[1], &c__1, &w[1], &c__1);
  522. absalp = abs(alpha);
  523. absgam = abs(*gamma);
  524. absest = abs(*sest);
  525. if (*job == 1) {
  526. /* Estimating largest singular value */
  527. /* special cases */
  528. if (*sest == 0.f) {
  529. s1 = f2cmax(absgam,absalp);
  530. if (s1 == 0.f) {
  531. *s = 0.f;
  532. *c__ = 1.f;
  533. *sestpr = 0.f;
  534. } else {
  535. *s = alpha / s1;
  536. *c__ = *gamma / s1;
  537. tmp = sqrt(*s * *s + *c__ * *c__);
  538. *s /= tmp;
  539. *c__ /= tmp;
  540. *sestpr = s1 * tmp;
  541. }
  542. return 0;
  543. } else if (absgam <= eps * absest) {
  544. *s = 1.f;
  545. *c__ = 0.f;
  546. tmp = f2cmax(absest,absalp);
  547. s1 = absest / tmp;
  548. s2 = absalp / tmp;
  549. *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
  550. return 0;
  551. } else if (absalp <= eps * absest) {
  552. s1 = absgam;
  553. s2 = absest;
  554. if (s1 <= s2) {
  555. *s = 1.f;
  556. *c__ = 0.f;
  557. *sestpr = s2;
  558. } else {
  559. *s = 0.f;
  560. *c__ = 1.f;
  561. *sestpr = s1;
  562. }
  563. return 0;
  564. } else if (absest <= eps * absalp || absest <= eps * absgam) {
  565. s1 = absgam;
  566. s2 = absalp;
  567. if (s1 <= s2) {
  568. tmp = s1 / s2;
  569. *s = sqrt(tmp * tmp + 1.f);
  570. *sestpr = s2 * *s;
  571. *c__ = *gamma / s2 / *s;
  572. *s = r_sign(&c_b5, &alpha) / *s;
  573. } else {
  574. tmp = s2 / s1;
  575. *c__ = sqrt(tmp * tmp + 1.f);
  576. *sestpr = s1 * *c__;
  577. *s = alpha / s1 / *c__;
  578. *c__ = r_sign(&c_b5, gamma) / *c__;
  579. }
  580. return 0;
  581. } else {
  582. /* normal case */
  583. zeta1 = alpha / absest;
  584. zeta2 = *gamma / absest;
  585. b = (1.f - zeta1 * zeta1 - zeta2 * zeta2) * .5f;
  586. *c__ = zeta1 * zeta1;
  587. if (b > 0.f) {
  588. t = *c__ / (b + sqrt(b * b + *c__));
  589. } else {
  590. t = sqrt(b * b + *c__) - b;
  591. }
  592. sine = -zeta1 / t;
  593. cosine = -zeta2 / (t + 1.f);
  594. tmp = sqrt(sine * sine + cosine * cosine);
  595. *s = sine / tmp;
  596. *c__ = cosine / tmp;
  597. *sestpr = sqrt(t + 1.f) * absest;
  598. return 0;
  599. }
  600. } else if (*job == 2) {
  601. /* Estimating smallest singular value */
  602. /* special cases */
  603. if (*sest == 0.f) {
  604. *sestpr = 0.f;
  605. if (f2cmax(absgam,absalp) == 0.f) {
  606. sine = 1.f;
  607. cosine = 0.f;
  608. } else {
  609. sine = -(*gamma);
  610. cosine = alpha;
  611. }
  612. /* Computing MAX */
  613. r__1 = abs(sine), r__2 = abs(cosine);
  614. s1 = f2cmax(r__1,r__2);
  615. *s = sine / s1;
  616. *c__ = cosine / s1;
  617. tmp = sqrt(*s * *s + *c__ * *c__);
  618. *s /= tmp;
  619. *c__ /= tmp;
  620. return 0;
  621. } else if (absgam <= eps * absest) {
  622. *s = 0.f;
  623. *c__ = 1.f;
  624. *sestpr = absgam;
  625. return 0;
  626. } else if (absalp <= eps * absest) {
  627. s1 = absgam;
  628. s2 = absest;
  629. if (s1 <= s2) {
  630. *s = 0.f;
  631. *c__ = 1.f;
  632. *sestpr = s1;
  633. } else {
  634. *s = 1.f;
  635. *c__ = 0.f;
  636. *sestpr = s2;
  637. }
  638. return 0;
  639. } else if (absest <= eps * absalp || absest <= eps * absgam) {
  640. s1 = absgam;
  641. s2 = absalp;
  642. if (s1 <= s2) {
  643. tmp = s1 / s2;
  644. *c__ = sqrt(tmp * tmp + 1.f);
  645. *sestpr = absest * (tmp / *c__);
  646. *s = -(*gamma / s2) / *c__;
  647. *c__ = r_sign(&c_b5, &alpha) / *c__;
  648. } else {
  649. tmp = s2 / s1;
  650. *s = sqrt(tmp * tmp + 1.f);
  651. *sestpr = absest / *s;
  652. *c__ = alpha / s1 / *s;
  653. *s = -r_sign(&c_b5, gamma) / *s;
  654. }
  655. return 0;
  656. } else {
  657. /* normal case */
  658. zeta1 = alpha / absest;
  659. zeta2 = *gamma / absest;
  660. /* Computing MAX */
  661. r__3 = zeta1 * zeta1 + 1.f + (r__1 = zeta1 * zeta2, abs(r__1)),
  662. r__4 = (r__2 = zeta1 * zeta2, abs(r__2)) + zeta2 * zeta2;
  663. norma = f2cmax(r__3,r__4);
  664. /* See if root is closer to zero or to ONE */
  665. test = (zeta1 - zeta2) * 2.f * (zeta1 + zeta2) + 1.f;
  666. if (test >= 0.f) {
  667. /* root is close to zero, compute directly */
  668. b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.f) * .5f;
  669. *c__ = zeta2 * zeta2;
  670. t = *c__ / (b + sqrt((r__1 = b * b - *c__, abs(r__1))));
  671. sine = zeta1 / (1.f - t);
  672. cosine = -zeta2 / t;
  673. *sestpr = sqrt(t + eps * 4.f * eps * norma) * absest;
  674. } else {
  675. /* root is closer to ONE, shift by that amount */
  676. b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.f) * .5f;
  677. *c__ = zeta1 * zeta1;
  678. if (b >= 0.f) {
  679. t = -(*c__) / (b + sqrt(b * b + *c__));
  680. } else {
  681. t = b - sqrt(b * b + *c__);
  682. }
  683. sine = -zeta1 / t;
  684. cosine = -zeta2 / (t + 1.f);
  685. *sestpr = sqrt(t + 1.f + eps * 4.f * eps * norma) * absest;
  686. }
  687. tmp = sqrt(sine * sine + cosine * cosine);
  688. *s = sine / tmp;
  689. *c__ = cosine / tmp;
  690. return 0;
  691. }
  692. }
  693. return 0;
  694. /* End of SLAIC1 */
  695. } /* slaic1_ */