You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaein.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. /* > \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse
  382. iteration. */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download SLAEIN + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaein.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaein.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaein.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
  401. /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
  402. /* LOGICAL NOINIT, RIGHTV */
  403. /* INTEGER INFO, LDB, LDH, N */
  404. /* REAL BIGNUM, EPS3, SMLNUM, WI, WR */
  405. /* REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
  406. /* $ WORK( * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > SLAEIN uses inverse iteration to find a right or left eigenvector */
  413. /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
  414. /* > matrix H. */
  415. /* > \endverbatim */
  416. /* Arguments: */
  417. /* ========== */
  418. /* > \param[in] RIGHTV */
  419. /* > \verbatim */
  420. /* > RIGHTV is LOGICAL */
  421. /* > = .TRUE. : compute right eigenvector; */
  422. /* > = .FALSE.: compute left eigenvector. */
  423. /* > \endverbatim */
  424. /* > */
  425. /* > \param[in] NOINIT */
  426. /* > \verbatim */
  427. /* > NOINIT is LOGICAL */
  428. /* > = .TRUE. : no initial vector supplied in (VR,VI). */
  429. /* > = .FALSE.: initial vector supplied in (VR,VI). */
  430. /* > \endverbatim */
  431. /* > */
  432. /* > \param[in] N */
  433. /* > \verbatim */
  434. /* > N is INTEGER */
  435. /* > The order of the matrix H. N >= 0. */
  436. /* > \endverbatim */
  437. /* > */
  438. /* > \param[in] H */
  439. /* > \verbatim */
  440. /* > H is REAL array, dimension (LDH,N) */
  441. /* > The upper Hessenberg matrix H. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] LDH */
  445. /* > \verbatim */
  446. /* > LDH is INTEGER */
  447. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] WR */
  451. /* > \verbatim */
  452. /* > WR is REAL */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] WI */
  456. /* > \verbatim */
  457. /* > WI is REAL */
  458. /* > The real and imaginary parts of the eigenvalue of H whose */
  459. /* > corresponding right or left eigenvector is to be computed. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in,out] VR */
  463. /* > \verbatim */
  464. /* > VR is REAL array, dimension (N) */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in,out] VI */
  468. /* > \verbatim */
  469. /* > VI is REAL array, dimension (N) */
  470. /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
  471. /* > a real starting vector for inverse iteration using the real */
  472. /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
  473. /* > must contain the real and imaginary parts of a complex */
  474. /* > starting vector for inverse iteration using the complex */
  475. /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */
  476. /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */
  477. /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
  478. /* > VR and VI contain the real and imaginary parts of the */
  479. /* > computed complex eigenvector. The eigenvector is normalized */
  480. /* > so that the component of largest magnitude has magnitude 1; */
  481. /* > here the magnitude of a complex number (x,y) is taken to be */
  482. /* > |x| + |y|. */
  483. /* > VI is not referenced if WI = 0.0. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[out] B */
  487. /* > \verbatim */
  488. /* > B is REAL array, dimension (LDB,N) */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[in] LDB */
  492. /* > \verbatim */
  493. /* > LDB is INTEGER */
  494. /* > The leading dimension of the array B. LDB >= N+1. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[out] WORK */
  498. /* > \verbatim */
  499. /* > WORK is REAL array, dimension (N) */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[in] EPS3 */
  503. /* > \verbatim */
  504. /* > EPS3 is REAL */
  505. /* > A small machine-dependent value which is used to perturb */
  506. /* > close eigenvalues, and to replace zero pivots. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[in] SMLNUM */
  510. /* > \verbatim */
  511. /* > SMLNUM is REAL */
  512. /* > A machine-dependent value close to the underflow threshold. */
  513. /* > \endverbatim */
  514. /* > */
  515. /* > \param[in] BIGNUM */
  516. /* > \verbatim */
  517. /* > BIGNUM is REAL */
  518. /* > A machine-dependent value close to the overflow threshold. */
  519. /* > \endverbatim */
  520. /* > */
  521. /* > \param[out] INFO */
  522. /* > \verbatim */
  523. /* > INFO is INTEGER */
  524. /* > = 0: successful exit */
  525. /* > = 1: inverse iteration did not converge; VR is set to the */
  526. /* > last iterate, and so is VI if WI.ne.0.0. */
  527. /* > \endverbatim */
  528. /* Authors: */
  529. /* ======== */
  530. /* > \author Univ. of Tennessee */
  531. /* > \author Univ. of California Berkeley */
  532. /* > \author Univ. of Colorado Denver */
  533. /* > \author NAG Ltd. */
  534. /* > \date December 2016 */
  535. /* > \ingroup realOTHERauxiliary */
  536. /* ===================================================================== */
  537. /* Subroutine */ int slaein_(logical *rightv, logical *noinit, integer *n,
  538. real *h__, integer *ldh, real *wr, real *wi, real *vr, real *vi, real
  539. *b, integer *ldb, real *work, real *eps3, real *smlnum, real *bignum,
  540. integer *info)
  541. {
  542. /* System generated locals */
  543. integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
  544. real r__1, r__2, r__3, r__4;
  545. /* Local variables */
  546. integer ierr;
  547. real temp, norm, vmax;
  548. extern real snrm2_(integer *, real *, integer *);
  549. integer i__, j;
  550. real scale, w, x, y;
  551. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  552. char trans[1];
  553. real vcrit;
  554. extern real sasum_(integer *, real *, integer *);
  555. integer i1, i2, i3;
  556. real rootn, vnorm, w1;
  557. extern real slapy2_(real *, real *);
  558. real ei, ej, absbii, absbjj, xi, xr;
  559. extern integer isamax_(integer *, real *, integer *);
  560. extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real *
  561. , real *);
  562. char normin[1];
  563. real nrmsml;
  564. extern /* Subroutine */ int slatrs_(char *, char *, char *, char *,
  565. integer *, real *, integer *, real *, real *, real *, integer *);
  566. real growto, rec;
  567. integer its;
  568. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  569. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  570. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  571. /* December 2016 */
  572. /* ===================================================================== */
  573. /* Parameter adjustments */
  574. h_dim1 = *ldh;
  575. h_offset = 1 + h_dim1 * 1;
  576. h__ -= h_offset;
  577. --vr;
  578. --vi;
  579. b_dim1 = *ldb;
  580. b_offset = 1 + b_dim1 * 1;
  581. b -= b_offset;
  582. --work;
  583. /* Function Body */
  584. *info = 0;
  585. /* GROWTO is the threshold used in the acceptance test for an */
  586. /* eigenvector. */
  587. rootn = sqrt((real) (*n));
  588. growto = .1f / rootn;
  589. /* Computing MAX */
  590. r__1 = 1.f, r__2 = *eps3 * rootn;
  591. nrmsml = f2cmax(r__1,r__2) * *smlnum;
  592. /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
  593. /* the imaginary parts of the diagonal elements are not stored). */
  594. i__1 = *n;
  595. for (j = 1; j <= i__1; ++j) {
  596. i__2 = j - 1;
  597. for (i__ = 1; i__ <= i__2; ++i__) {
  598. b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
  599. /* L10: */
  600. }
  601. b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
  602. /* L20: */
  603. }
  604. if (*wi == 0.f) {
  605. /* Real eigenvalue. */
  606. if (*noinit) {
  607. /* Set initial vector. */
  608. i__1 = *n;
  609. for (i__ = 1; i__ <= i__1; ++i__) {
  610. vr[i__] = *eps3;
  611. /* L30: */
  612. }
  613. } else {
  614. /* Scale supplied initial vector. */
  615. vnorm = snrm2_(n, &vr[1], &c__1);
  616. r__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
  617. sscal_(n, &r__1, &vr[1], &c__1);
  618. }
  619. if (*rightv) {
  620. /* LU decomposition with partial pivoting of B, replacing zero */
  621. /* pivots by EPS3. */
  622. i__1 = *n - 1;
  623. for (i__ = 1; i__ <= i__1; ++i__) {
  624. ei = h__[i__ + 1 + i__ * h_dim1];
  625. if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) < abs(ei)) {
  626. /* Interchange rows and eliminate. */
  627. x = b[i__ + i__ * b_dim1] / ei;
  628. b[i__ + i__ * b_dim1] = ei;
  629. i__2 = *n;
  630. for (j = i__ + 1; j <= i__2; ++j) {
  631. temp = b[i__ + 1 + j * b_dim1];
  632. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
  633. temp;
  634. b[i__ + j * b_dim1] = temp;
  635. /* L40: */
  636. }
  637. } else {
  638. /* Eliminate without interchange. */
  639. if (b[i__ + i__ * b_dim1] == 0.f) {
  640. b[i__ + i__ * b_dim1] = *eps3;
  641. }
  642. x = ei / b[i__ + i__ * b_dim1];
  643. if (x != 0.f) {
  644. i__2 = *n;
  645. for (j = i__ + 1; j <= i__2; ++j) {
  646. b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
  647. ;
  648. /* L50: */
  649. }
  650. }
  651. }
  652. /* L60: */
  653. }
  654. if (b[*n + *n * b_dim1] == 0.f) {
  655. b[*n + *n * b_dim1] = *eps3;
  656. }
  657. *(unsigned char *)trans = 'N';
  658. } else {
  659. /* UL decomposition with partial pivoting of B, replacing zero */
  660. /* pivots by EPS3. */
  661. for (j = *n; j >= 2; --j) {
  662. ej = h__[j + (j - 1) * h_dim1];
  663. if ((r__1 = b[j + j * b_dim1], abs(r__1)) < abs(ej)) {
  664. /* Interchange columns and eliminate. */
  665. x = b[j + j * b_dim1] / ej;
  666. b[j + j * b_dim1] = ej;
  667. i__1 = j - 1;
  668. for (i__ = 1; i__ <= i__1; ++i__) {
  669. temp = b[i__ + (j - 1) * b_dim1];
  670. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
  671. temp;
  672. b[i__ + j * b_dim1] = temp;
  673. /* L70: */
  674. }
  675. } else {
  676. /* Eliminate without interchange. */
  677. if (b[j + j * b_dim1] == 0.f) {
  678. b[j + j * b_dim1] = *eps3;
  679. }
  680. x = ej / b[j + j * b_dim1];
  681. if (x != 0.f) {
  682. i__1 = j - 1;
  683. for (i__ = 1; i__ <= i__1; ++i__) {
  684. b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
  685. b_dim1];
  686. /* L80: */
  687. }
  688. }
  689. }
  690. /* L90: */
  691. }
  692. if (b[b_dim1 + 1] == 0.f) {
  693. b[b_dim1 + 1] = *eps3;
  694. }
  695. *(unsigned char *)trans = 'T';
  696. }
  697. *(unsigned char *)normin = 'N';
  698. i__1 = *n;
  699. for (its = 1; its <= i__1; ++its) {
  700. /* Solve U*x = scale*v for a right eigenvector */
  701. /* or U**T*x = scale*v for a left eigenvector, */
  702. /* overwriting x on v. */
  703. slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
  704. vr[1], &scale, &work[1], &ierr);
  705. *(unsigned char *)normin = 'Y';
  706. /* Test for sufficient growth in the norm of v. */
  707. vnorm = sasum_(n, &vr[1], &c__1);
  708. if (vnorm >= growto * scale) {
  709. goto L120;
  710. }
  711. /* Choose new orthogonal starting vector and try again. */
  712. temp = *eps3 / (rootn + 1.f);
  713. vr[1] = *eps3;
  714. i__2 = *n;
  715. for (i__ = 2; i__ <= i__2; ++i__) {
  716. vr[i__] = temp;
  717. /* L100: */
  718. }
  719. vr[*n - its + 1] -= *eps3 * rootn;
  720. /* L110: */
  721. }
  722. /* Failure to find eigenvector in N iterations. */
  723. *info = 1;
  724. L120:
  725. /* Normalize eigenvector. */
  726. i__ = isamax_(n, &vr[1], &c__1);
  727. r__2 = 1.f / (r__1 = vr[i__], abs(r__1));
  728. sscal_(n, &r__2, &vr[1], &c__1);
  729. } else {
  730. /* Complex eigenvalue. */
  731. if (*noinit) {
  732. /* Set initial vector. */
  733. i__1 = *n;
  734. for (i__ = 1; i__ <= i__1; ++i__) {
  735. vr[i__] = *eps3;
  736. vi[i__] = 0.f;
  737. /* L130: */
  738. }
  739. } else {
  740. /* Scale supplied initial vector. */
  741. r__1 = snrm2_(n, &vr[1], &c__1);
  742. r__2 = snrm2_(n, &vi[1], &c__1);
  743. norm = slapy2_(&r__1, &r__2);
  744. rec = *eps3 * rootn / f2cmax(norm,nrmsml);
  745. sscal_(n, &rec, &vr[1], &c__1);
  746. sscal_(n, &rec, &vi[1], &c__1);
  747. }
  748. if (*rightv) {
  749. /* LU decomposition with partial pivoting of B, replacing zero */
  750. /* pivots by EPS3. */
  751. /* The imaginary part of the (i,j)-th element of U is stored in */
  752. /* B(j+1,i). */
  753. b[b_dim1 + 2] = -(*wi);
  754. i__1 = *n;
  755. for (i__ = 2; i__ <= i__1; ++i__) {
  756. b[i__ + 1 + b_dim1] = 0.f;
  757. /* L140: */
  758. }
  759. i__1 = *n - 1;
  760. for (i__ = 1; i__ <= i__1; ++i__) {
  761. absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
  762. b_dim1]);
  763. ei = h__[i__ + 1 + i__ * h_dim1];
  764. if (absbii < abs(ei)) {
  765. /* Interchange rows and eliminate. */
  766. xr = b[i__ + i__ * b_dim1] / ei;
  767. xi = b[i__ + 1 + i__ * b_dim1] / ei;
  768. b[i__ + i__ * b_dim1] = ei;
  769. b[i__ + 1 + i__ * b_dim1] = 0.f;
  770. i__2 = *n;
  771. for (j = i__ + 1; j <= i__2; ++j) {
  772. temp = b[i__ + 1 + j * b_dim1];
  773. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
  774. temp;
  775. b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
  776. b_dim1] - xi * temp;
  777. b[i__ + j * b_dim1] = temp;
  778. b[j + 1 + i__ * b_dim1] = 0.f;
  779. /* L150: */
  780. }
  781. b[i__ + 2 + i__ * b_dim1] = -(*wi);
  782. b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
  783. b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
  784. } else {
  785. /* Eliminate without interchanging rows. */
  786. if (absbii == 0.f) {
  787. b[i__ + i__ * b_dim1] = *eps3;
  788. b[i__ + 1 + i__ * b_dim1] = 0.f;
  789. absbii = *eps3;
  790. }
  791. ei = ei / absbii / absbii;
  792. xr = b[i__ + i__ * b_dim1] * ei;
  793. xi = -b[i__ + 1 + i__ * b_dim1] * ei;
  794. i__2 = *n;
  795. for (j = i__ + 1; j <= i__2; ++j) {
  796. b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
  797. xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
  798. * b_dim1];
  799. b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
  800. b_dim1] - xi * b[i__ + j * b_dim1];
  801. /* L160: */
  802. }
  803. b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
  804. }
  805. /* Compute 1-norm of offdiagonal elements of i-th row. */
  806. i__2 = *n - i__;
  807. i__3 = *n - i__;
  808. work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
  809. + sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
  810. /* L170: */
  811. }
  812. if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f)
  813. {
  814. b[*n + *n * b_dim1] = *eps3;
  815. }
  816. work[*n] = 0.f;
  817. i1 = *n;
  818. i2 = 1;
  819. i3 = -1;
  820. } else {
  821. /* UL decomposition with partial pivoting of conjg(B), */
  822. /* replacing zero pivots by EPS3. */
  823. /* The imaginary part of the (i,j)-th element of U is stored in */
  824. /* B(j+1,i). */
  825. b[*n + 1 + *n * b_dim1] = *wi;
  826. i__1 = *n - 1;
  827. for (j = 1; j <= i__1; ++j) {
  828. b[*n + 1 + j * b_dim1] = 0.f;
  829. /* L180: */
  830. }
  831. for (j = *n; j >= 2; --j) {
  832. ej = h__[j + (j - 1) * h_dim1];
  833. absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
  834. if (absbjj < abs(ej)) {
  835. /* Interchange columns and eliminate */
  836. xr = b[j + j * b_dim1] / ej;
  837. xi = b[j + 1 + j * b_dim1] / ej;
  838. b[j + j * b_dim1] = ej;
  839. b[j + 1 + j * b_dim1] = 0.f;
  840. i__1 = j - 1;
  841. for (i__ = 1; i__ <= i__1; ++i__) {
  842. temp = b[i__ + (j - 1) * b_dim1];
  843. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
  844. temp;
  845. b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
  846. temp;
  847. b[i__ + j * b_dim1] = temp;
  848. b[j + 1 + i__ * b_dim1] = 0.f;
  849. /* L190: */
  850. }
  851. b[j + 1 + (j - 1) * b_dim1] = *wi;
  852. b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
  853. b[j + (j - 1) * b_dim1] -= xr * *wi;
  854. } else {
  855. /* Eliminate without interchange. */
  856. if (absbjj == 0.f) {
  857. b[j + j * b_dim1] = *eps3;
  858. b[j + 1 + j * b_dim1] = 0.f;
  859. absbjj = *eps3;
  860. }
  861. ej = ej / absbjj / absbjj;
  862. xr = b[j + j * b_dim1] * ej;
  863. xi = -b[j + 1 + j * b_dim1] * ej;
  864. i__1 = j - 1;
  865. for (i__ = 1; i__ <= i__1; ++i__) {
  866. b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
  867. - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
  868. i__ * b_dim1];
  869. b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
  870. xi * b[i__ + j * b_dim1];
  871. /* L200: */
  872. }
  873. b[j + (j - 1) * b_dim1] += *wi;
  874. }
  875. /* Compute 1-norm of offdiagonal elements of j-th column. */
  876. i__1 = j - 1;
  877. i__2 = j - 1;
  878. work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(&
  879. i__2, &b[j + 1 + b_dim1], ldb);
  880. /* L210: */
  881. }
  882. if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f) {
  883. b[b_dim1 + 1] = *eps3;
  884. }
  885. work[1] = 0.f;
  886. i1 = 1;
  887. i2 = *n;
  888. i3 = 1;
  889. }
  890. i__1 = *n;
  891. for (its = 1; its <= i__1; ++its) {
  892. scale = 1.f;
  893. vmax = 1.f;
  894. vcrit = *bignum;
  895. /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
  896. /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
  897. /* overwriting (xr,xi) on (vr,vi). */
  898. i__2 = i2;
  899. i__3 = i3;
  900. for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
  901. {
  902. if (work[i__] > vcrit) {
  903. rec = 1.f / vmax;
  904. sscal_(n, &rec, &vr[1], &c__1);
  905. sscal_(n, &rec, &vi[1], &c__1);
  906. scale *= rec;
  907. vmax = 1.f;
  908. vcrit = *bignum;
  909. }
  910. xr = vr[i__];
  911. xi = vi[i__];
  912. if (*rightv) {
  913. i__4 = *n;
  914. for (j = i__ + 1; j <= i__4; ++j) {
  915. xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
  916. * b_dim1] * vi[j];
  917. xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
  918. * b_dim1] * vr[j];
  919. /* L220: */
  920. }
  921. } else {
  922. i__4 = i__ - 1;
  923. for (j = 1; j <= i__4; ++j) {
  924. xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
  925. * b_dim1] * vi[j];
  926. xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
  927. * b_dim1] * vr[j];
  928. /* L230: */
  929. }
  930. }
  931. w = (r__1 = b[i__ + i__ * b_dim1], abs(r__1)) + (r__2 = b[i__
  932. + 1 + i__ * b_dim1], abs(r__2));
  933. if (w > *smlnum) {
  934. if (w < 1.f) {
  935. w1 = abs(xr) + abs(xi);
  936. if (w1 > w * *bignum) {
  937. rec = 1.f / w1;
  938. sscal_(n, &rec, &vr[1], &c__1);
  939. sscal_(n, &rec, &vi[1], &c__1);
  940. xr = vr[i__];
  941. xi = vi[i__];
  942. scale *= rec;
  943. vmax *= rec;
  944. }
  945. }
  946. /* Divide by diagonal element of B. */
  947. sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
  948. i__ * b_dim1], &vr[i__], &vi[i__]);
  949. /* Computing MAX */
  950. r__3 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__], abs(
  951. r__2));
  952. vmax = f2cmax(r__3,vmax);
  953. vcrit = *bignum / vmax;
  954. } else {
  955. i__4 = *n;
  956. for (j = 1; j <= i__4; ++j) {
  957. vr[j] = 0.f;
  958. vi[j] = 0.f;
  959. /* L240: */
  960. }
  961. vr[i__] = 1.f;
  962. vi[i__] = 1.f;
  963. scale = 0.f;
  964. vmax = 1.f;
  965. vcrit = *bignum;
  966. }
  967. /* L250: */
  968. }
  969. /* Test for sufficient growth in the norm of (VR,VI). */
  970. vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1);
  971. if (vnorm >= growto * scale) {
  972. goto L280;
  973. }
  974. /* Choose a new orthogonal starting vector and try again. */
  975. y = *eps3 / (rootn + 1.f);
  976. vr[1] = *eps3;
  977. vi[1] = 0.f;
  978. i__3 = *n;
  979. for (i__ = 2; i__ <= i__3; ++i__) {
  980. vr[i__] = y;
  981. vi[i__] = 0.f;
  982. /* L260: */
  983. }
  984. vr[*n - its + 1] -= *eps3 * rootn;
  985. /* L270: */
  986. }
  987. /* Failure to find eigenvector in N iterations */
  988. *info = 1;
  989. L280:
  990. /* Normalize eigenvector. */
  991. vnorm = 0.f;
  992. i__1 = *n;
  993. for (i__ = 1; i__ <= i__1; ++i__) {
  994. /* Computing MAX */
  995. r__3 = vnorm, r__4 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__]
  996. , abs(r__2));
  997. vnorm = f2cmax(r__3,r__4);
  998. /* L290: */
  999. }
  1000. r__1 = 1.f / vnorm;
  1001. sscal_(n, &r__1, &vr[1], &c__1);
  1002. r__1 = 1.f / vnorm;
  1003. sscal_(n, &r__1, &vi[1], &c__1);
  1004. }
  1005. return 0;
  1006. /* End of SLAEIN */
  1007. } /* slaein_ */