|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698 |
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static doublereal c_b10 = -.125;
- static real c_b35 = -1.f;
- static integer c__1 = 1;
-
- /* > \brief \b SBBCSD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SBBCSD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbbcsd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbbcsd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbbcsd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, */
- /* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, */
- /* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, */
- /* B22D, B22E, WORK, LWORK, INFO ) */
-
- /* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS */
- /* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q */
- /* REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ), */
- /* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ), */
- /* $ PHI( * ), THETA( * ), WORK( * ) */
- /* REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
- /* $ V2T( LDV2T, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SBBCSD computes the CS decomposition of an orthogonal matrix in */
- /* > bidiagonal-block form, */
- /* > */
- /* > */
- /* > [ B11 | B12 0 0 ] */
- /* > [ 0 | 0 -I 0 ] */
- /* > X = [----------------] */
- /* > [ B21 | B22 0 0 ] */
- /* > [ 0 | 0 0 I ] */
- /* > */
- /* > [ C | -S 0 0 ] */
- /* > [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T */
- /* > = [---------] [---------------] [---------] . */
- /* > [ | U2 ] [ S | C 0 0 ] [ | V2 ] */
- /* > [ 0 | 0 0 I ] */
- /* > */
- /* > X is M-by-M, its top-left block is P-by-Q, and Q must be no larger */
- /* > than P, M-P, or M-Q. (If Q is not the smallest index, then X must be */
- /* > transposed and/or permuted. This can be done in constant time using */
- /* > the TRANS and SIGNS options. See SORCSD for details.) */
- /* > */
- /* > The bidiagonal matrices B11, B12, B21, and B22 are represented */
- /* > implicitly by angles THETA(1:Q) and PHI(1:Q-1). */
- /* > */
- /* > The orthogonal matrices U1, U2, V1T, and V2T are input/output. */
- /* > The input matrices are pre- or post-multiplied by the appropriate */
- /* > singular vector matrices. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBU1 */
- /* > \verbatim */
- /* > JOBU1 is CHARACTER */
- /* > = 'Y': U1 is updated; */
- /* > otherwise: U1 is not updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBU2 */
- /* > \verbatim */
- /* > JOBU2 is CHARACTER */
- /* > = 'Y': U2 is updated; */
- /* > otherwise: U2 is not updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV1T */
- /* > \verbatim */
- /* > JOBV1T is CHARACTER */
- /* > = 'Y': V1T is updated; */
- /* > otherwise: V1T is not updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV2T */
- /* > \verbatim */
- /* > JOBV2T is CHARACTER */
- /* > = 'Y': V2T is updated; */
- /* > otherwise: V2T is not updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER */
- /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
- /* > order; */
- /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
- /* > major order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows and columns in X, the orthogonal matrix in */
- /* > bidiagonal-block form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is INTEGER */
- /* > The number of rows in the top-left block of X. 0 <= P <= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Q */
- /* > \verbatim */
- /* > Q is INTEGER */
- /* > The number of columns in the top-left block of X. */
- /* > 0 <= Q <= MIN(P,M-P,M-Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] THETA */
- /* > \verbatim */
- /* > THETA is REAL array, dimension (Q) */
- /* > On entry, the angles THETA(1),...,THETA(Q) that, along with */
- /* > PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block */
- /* > form. On exit, the angles whose cosines and sines define the */
- /* > diagonal blocks in the CS decomposition. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] PHI */
- /* > \verbatim */
- /* > PHI is REAL array, dimension (Q-1) */
- /* > The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., */
- /* > THETA(Q), define the matrix in bidiagonal-block form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] U1 */
- /* > \verbatim */
- /* > U1 is REAL array, dimension (LDU1,P) */
- /* > On entry, a P-by-P matrix. On exit, U1 is postmultiplied */
- /* > by the left singular vector matrix common to [ B11 ; 0 ] and */
- /* > [ B12 0 0 ; 0 -I 0 0 ]. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU1 */
- /* > \verbatim */
- /* > LDU1 is INTEGER */
- /* > The leading dimension of the array U1, LDU1 >= MAX(1,P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] U2 */
- /* > \verbatim */
- /* > U2 is REAL array, dimension (LDU2,M-P) */
- /* > On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is */
- /* > postmultiplied by the left singular vector matrix common to */
- /* > [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU2 */
- /* > \verbatim */
- /* > LDU2 is INTEGER */
- /* > The leading dimension of the array U2, LDU2 >= MAX(1,M-P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] V1T */
- /* > \verbatim */
- /* > V1T is REAL array, dimension (LDV1T,Q) */
- /* > On entry, a Q-by-Q matrix. On exit, V1T is premultiplied */
- /* > by the transpose of the right singular vector */
- /* > matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV1T */
- /* > \verbatim */
- /* > LDV1T is INTEGER */
- /* > The leading dimension of the array V1T, LDV1T >= MAX(1,Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] V2T */
- /* > \verbatim */
- /* > V2T is REAL array, dimension (LDV2T,M-Q) */
- /* > On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is */
- /* > premultiplied by the transpose of the right */
- /* > singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and */
- /* > [ B22 0 0 ; 0 0 I ]. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV2T */
- /* > \verbatim */
- /* > LDV2T is INTEGER */
- /* > The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B11D */
- /* > \verbatim */
- /* > B11D is REAL array, dimension (Q) */
- /* > When SBBCSD converges, B11D contains the cosines of THETA(1), */
- /* > ..., THETA(Q). If SBBCSD fails to converge, then B11D */
- /* > contains the diagonal of the partially reduced top-left */
- /* > block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B11E */
- /* > \verbatim */
- /* > B11E is REAL array, dimension (Q-1) */
- /* > When SBBCSD converges, B11E contains zeros. If SBBCSD fails */
- /* > to converge, then B11E contains the superdiagonal of the */
- /* > partially reduced top-left block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B12D */
- /* > \verbatim */
- /* > B12D is REAL array, dimension (Q) */
- /* > When SBBCSD converges, B12D contains the negative sines of */
- /* > THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then */
- /* > B12D contains the diagonal of the partially reduced top-right */
- /* > block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B12E */
- /* > \verbatim */
- /* > B12E is REAL array, dimension (Q-1) */
- /* > When SBBCSD converges, B12E contains zeros. If SBBCSD fails */
- /* > to converge, then B12E contains the subdiagonal of the */
- /* > partially reduced top-right block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B21D */
- /* > \verbatim */
- /* > B21D is REAL array, dimension (Q) */
- /* > When SBBCSD converges, B21D contains the negative sines of */
- /* > THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then */
- /* > B21D contains the diagonal of the partially reduced bottom-left */
- /* > block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B21E */
- /* > \verbatim */
- /* > B21E is REAL array, dimension (Q-1) */
- /* > When SBBCSD converges, B21E contains zeros. If SBBCSD fails */
- /* > to converge, then B21E contains the subdiagonal of the */
- /* > partially reduced bottom-left block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B22D */
- /* > \verbatim */
- /* > B22D is REAL array, dimension (Q) */
- /* > When SBBCSD converges, B22D contains the negative sines of */
- /* > THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then */
- /* > B22D contains the diagonal of the partially reduced bottom-right */
- /* > block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B22E */
- /* > \verbatim */
- /* > B22E is REAL array, dimension (Q-1) */
- /* > When SBBCSD converges, B22E contains zeros. If SBBCSD fails */
- /* > to converge, then B22E contains the subdiagonal of the */
- /* > partially reduced bottom-right block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= MAX(1,8*Q). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the */
- /* > routine only calculates the optimal size of the WORK array, */
- /* > returns this value as the first entry of the work array, and */
- /* > no error message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if SBBCSD did not converge, INFO specifies the number */
- /* > of nonzero entries in PHI, and B11D, B11E, etc., */
- /* > contain the partially reduced matrix. */
- /* > \endverbatim */
-
- /* > \par Internal Parameters: */
- /* ========================= */
- /* > */
- /* > \verbatim */
- /* > TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8))) */
- /* > TOLMUL controls the convergence criterion of the QR loop. */
- /* > Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they */
- /* > are within TOLMUL*EPS of either bound. */
- /* > \endverbatim */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
- /* > Algorithms, 50(1):33-65, 2009. */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ int sbbcsd_(char *jobu1, char *jobu2, char *jobv1t, char *
- jobv2t, char *trans, integer *m, integer *p, integer *q, real *theta,
- real *phi, real *u1, integer *ldu1, real *u2, integer *ldu2, real *
- v1t, integer *ldv1t, real *v2t, integer *ldv2t, real *b11d, real *
- b11e, real *b12d, real *b12e, real *b21d, real *b21e, real *b22d,
- real *b22e, real *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
- v2t_dim1, v2t_offset, i__1, i__2;
- real r__1, r__2, r__3, r__4;
- doublereal d__1;
-
- /* Local variables */
- integer imin, mini, imax, iter;
- real unfl, temp;
- logical colmajor;
- real thetamin, thetamax;
- logical restart11, restart12, restart21, restart22;
- integer lworkmin, iu1cs, iu2cs;
- extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *)
- ;
- integer iu1sn, iu2sn, lworkopt, i__, j;
- real r__;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
- integer maxit;
- extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
- integer *, real *, real *, real *, integer *);
- real dummy;
- extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
- integer *);
- real x1, x2, y1, y2;
- integer iv1tcs, iv2tcs;
- logical wantu1, wantu2;
- integer iv1tsn, iv2tsn;
- real mu, nu, sigma11, sigma21;
- extern real slamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- real thresh, tolmul;
- extern /* Subroutine */ int mecago_();
- logical lquery;
- real b11bulge;
- logical wantv1t, wantv2t;
- real b12bulge, b21bulge, b22bulge, eps, tol;
- extern /* Subroutine */ int slartgp_(real *, real *, real *, real *, real
- *), slartgs_(real *, real *, real *, real *, real *);
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* =================================================================== */
-
-
-
- /* Test input arguments */
-
- /* Parameter adjustments */
- --theta;
- --phi;
- u1_dim1 = *ldu1;
- u1_offset = 1 + u1_dim1 * 1;
- u1 -= u1_offset;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- v1t_dim1 = *ldv1t;
- v1t_offset = 1 + v1t_dim1 * 1;
- v1t -= v1t_offset;
- v2t_dim1 = *ldv2t;
- v2t_offset = 1 + v2t_dim1 * 1;
- v2t -= v2t_offset;
- --b11d;
- --b11e;
- --b12d;
- --b12e;
- --b21d;
- --b21e;
- --b22d;
- --b22e;
- --work;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- wantu1 = lsame_(jobu1, "Y");
- wantu2 = lsame_(jobu2, "Y");
- wantv1t = lsame_(jobv1t, "Y");
- wantv2t = lsame_(jobv2t, "Y");
- colmajor = ! lsame_(trans, "T");
-
- if (*m < 0) {
- *info = -6;
- } else if (*p < 0 || *p > *m) {
- *info = -7;
- } else if (*q < 0 || *q > *m) {
- *info = -8;
- } else if (*q > *p || *q > *m - *p || *q > *m - *q) {
- *info = -8;
- } else if (wantu1 && *ldu1 < *p) {
- *info = -12;
- } else if (wantu2 && *ldu2 < *m - *p) {
- *info = -14;
- } else if (wantv1t && *ldv1t < *q) {
- *info = -16;
- } else if (wantv2t && *ldv2t < *m - *q) {
- *info = -18;
- }
-
- /* Quick return if Q = 0 */
-
- if (*info == 0 && *q == 0) {
- lworkmin = 1;
- work[1] = (real) lworkmin;
- return 0;
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
- iu1cs = 1;
- iu1sn = iu1cs + *q;
- iu2cs = iu1sn + *q;
- iu2sn = iu2cs + *q;
- iv1tcs = iu2sn + *q;
- iv1tsn = iv1tcs + *q;
- iv2tcs = iv1tsn + *q;
- iv2tsn = iv2tcs + *q;
- lworkopt = iv2tsn + *q - 1;
- lworkmin = lworkopt;
- work[1] = (real) lworkopt;
- if (*lwork < lworkmin && ! lquery) {
- *info = -28;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SBBCSD", &i__1,(ftnlen)6);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Get machine constants */
-
- eps = slamch_("Epsilon");
- unfl = slamch_("Safe minimum");
- /* Computing MAX */
- /* Computing MIN */
- d__1 = (doublereal) eps;
- r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b10);
- r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
- tolmul = f2cmax(r__1,r__2);
- tol = tolmul * eps;
- /* Computing MAX */
- r__1 = tol, r__2 = *q * 6 * *q * unfl;
- thresh = f2cmax(r__1,r__2);
-
- /* Test for negligible sines or cosines */
-
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (theta[i__] < thresh) {
- theta[i__] = 0.f;
- } else if (theta[i__] > 1.57079632679489662f - thresh) {
- theta[i__] = 1.57079632679489662f;
- }
- }
- i__1 = *q - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (phi[i__] < thresh) {
- phi[i__] = 0.f;
- } else if (phi[i__] > 1.57079632679489662f - thresh) {
- phi[i__] = 1.57079632679489662f;
- }
- }
-
- /* Initial deflation */
-
- imax = *q;
- while(imax > 1) {
- if (phi[imax - 1] != 0.f) {
- myexit_();
- }
- --imax;
- }
- imin = imax - 1;
- if (imin > 1) {
- while(phi[imin - 1] != 0.f) {
- --imin;
- if (imin <= 1) {
- myexit_();
- }
- }
- }
-
- /* Initialize iteration counter */
-
- maxit = *q * 6 * *q;
- iter = 0;
-
- /* Begin main iteration loop */
-
- while(imax > 1) {
-
- /* Compute the matrix entries */
-
- b11d[imin] = cos(theta[imin]);
- b21d[imin] = -sin(theta[imin]);
- i__1 = imax - 1;
- for (i__ = imin; i__ <= i__1; ++i__) {
- b11e[i__] = -sin(theta[i__]) * sin(phi[i__]);
- b11d[i__ + 1] = cos(theta[i__ + 1]) * cos(phi[i__]);
- b12d[i__] = sin(theta[i__]) * cos(phi[i__]);
- b12e[i__] = cos(theta[i__ + 1]) * sin(phi[i__]);
- b21e[i__] = -cos(theta[i__]) * sin(phi[i__]);
- b21d[i__ + 1] = -sin(theta[i__ + 1]) * cos(phi[i__]);
- b22d[i__] = cos(theta[i__]) * cos(phi[i__]);
- b22e[i__] = -sin(theta[i__ + 1]) * sin(phi[i__]);
- }
- b12d[imax] = sin(theta[imax]);
- b22d[imax] = cos(theta[imax]);
-
- /* Abort if not converging; otherwise, increment ITER */
-
- if (iter > maxit) {
- *info = 0;
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (phi[i__] != 0.f) {
- ++(*info);
- }
- }
- return 0;
- }
-
- iter = iter + imax - imin;
-
- /* Compute shifts */
-
- thetamax = theta[imin];
- thetamin = theta[imin];
- i__1 = imax;
- for (i__ = imin + 1; i__ <= i__1; ++i__) {
- if (theta[i__] > thetamax) {
- thetamax = theta[i__];
- }
- if (theta[i__] < thetamin) {
- thetamin = theta[i__];
- }
- }
-
- if (thetamax > 1.57079632679489662f - thresh) {
-
- /* Zero on diagonals of B11 and B22; induce deflation with a */
- /* zero shift */
-
- mu = 0.f;
- nu = 1.f;
-
- } else if (thetamin < thresh) {
-
- /* Zero on diagonals of B12 and B22; induce deflation with a */
- /* zero shift */
-
- mu = 1.f;
- nu = 0.f;
-
- } else {
-
- /* Compute shifts for B11 and B21 and use the lesser */
-
- slas2_(&b11d[imax - 1], &b11e[imax - 1], &b11d[imax], &sigma11, &
- dummy);
- slas2_(&b21d[imax - 1], &b21e[imax - 1], &b21d[imax], &sigma21, &
- dummy);
-
- if (sigma11 <= sigma21) {
- mu = sigma11;
- /* Computing 2nd power */
- r__1 = mu;
- nu = sqrt(1.f - r__1 * r__1);
- if (mu < thresh) {
- mu = 0.f;
- nu = 1.f;
- }
- } else {
- nu = sigma21;
- /* Computing 2nd power */
- r__1 = nu;
- mu = sqrt(1.f - r__1 * r__1);
- if (nu < thresh) {
- mu = 1.f;
- nu = 0.f;
- }
- }
- }
-
- /* Rotate to produce bulges in B11 and B21 */
-
- if (mu <= nu) {
- slartgs_(&b11d[imin], &b11e[imin], &mu, &work[iv1tcs + imin - 1],
- &work[iv1tsn + imin - 1]);
- } else {
- slartgs_(&b21d[imin], &b21e[imin], &nu, &work[iv1tcs + imin - 1],
- &work[iv1tsn + imin - 1]);
- }
-
- temp = work[iv1tcs + imin - 1] * b11d[imin] + work[iv1tsn + imin - 1]
- * b11e[imin];
- b11e[imin] = work[iv1tcs + imin - 1] * b11e[imin] - work[iv1tsn +
- imin - 1] * b11d[imin];
- b11d[imin] = temp;
- b11bulge = work[iv1tsn + imin - 1] * b11d[imin + 1];
- b11d[imin + 1] = work[iv1tcs + imin - 1] * b11d[imin + 1];
- temp = work[iv1tcs + imin - 1] * b21d[imin] + work[iv1tsn + imin - 1]
- * b21e[imin];
- b21e[imin] = work[iv1tcs + imin - 1] * b21e[imin] - work[iv1tsn +
- imin - 1] * b21d[imin];
- b21d[imin] = temp;
- b21bulge = work[iv1tsn + imin - 1] * b21d[imin + 1];
- b21d[imin + 1] = work[iv1tcs + imin - 1] * b21d[imin + 1];
-
- /* Compute THETA(IMIN) */
-
- /* Computing 2nd power */
- r__1 = b21d[imin];
- /* Computing 2nd power */
- r__2 = b21bulge;
- /* Computing 2nd power */
- r__3 = b11d[imin];
- /* Computing 2nd power */
- r__4 = b11bulge;
- theta[imin] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 * r__3
- + r__4 * r__4));
-
- /* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN) */
-
- /* Computing 2nd power */
- r__1 = b11d[imin];
- /* Computing 2nd power */
- r__2 = b11bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
- slartgp_(&b11bulge, &b11d[imin], &work[iu1sn + imin - 1], &work[
- iu1cs + imin - 1], &r__);
- } else if (mu <= nu) {
- slartgs_(&b11e[imin], &b11d[imin + 1], &mu, &work[iu1cs + imin -
- 1], &work[iu1sn + imin - 1]);
- } else {
- slartgs_(&b12d[imin], &b12e[imin], &nu, &work[iu1cs + imin - 1], &
- work[iu1sn + imin - 1]);
- }
- /* Computing 2nd power */
- r__1 = b21d[imin];
- /* Computing 2nd power */
- r__2 = b21bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
- slartgp_(&b21bulge, &b21d[imin], &work[iu2sn + imin - 1], &work[
- iu2cs + imin - 1], &r__);
- } else if (nu < mu) {
- slartgs_(&b21e[imin], &b21d[imin + 1], &nu, &work[iu2cs + imin -
- 1], &work[iu2sn + imin - 1]);
- } else {
- slartgs_(&b22d[imin], &b22e[imin], &mu, &work[iu2cs + imin - 1], &
- work[iu2sn + imin - 1]);
- }
- work[iu2cs + imin - 1] = -work[iu2cs + imin - 1];
- work[iu2sn + imin - 1] = -work[iu2sn + imin - 1];
-
- temp = work[iu1cs + imin - 1] * b11e[imin] + work[iu1sn + imin - 1] *
- b11d[imin + 1];
- b11d[imin + 1] = work[iu1cs + imin - 1] * b11d[imin + 1] - work[iu1sn
- + imin - 1] * b11e[imin];
- b11e[imin] = temp;
- if (imax > imin + 1) {
- b11bulge = work[iu1sn + imin - 1] * b11e[imin + 1];
- b11e[imin + 1] = work[iu1cs + imin - 1] * b11e[imin + 1];
- }
- temp = work[iu1cs + imin - 1] * b12d[imin] + work[iu1sn + imin - 1] *
- b12e[imin];
- b12e[imin] = work[iu1cs + imin - 1] * b12e[imin] - work[iu1sn + imin
- - 1] * b12d[imin];
- b12d[imin] = temp;
- b12bulge = work[iu1sn + imin - 1] * b12d[imin + 1];
- b12d[imin + 1] = work[iu1cs + imin - 1] * b12d[imin + 1];
- temp = work[iu2cs + imin - 1] * b21e[imin] + work[iu2sn + imin - 1] *
- b21d[imin + 1];
- b21d[imin + 1] = work[iu2cs + imin - 1] * b21d[imin + 1] - work[iu2sn
- + imin - 1] * b21e[imin];
- b21e[imin] = temp;
- if (imax > imin + 1) {
- b21bulge = work[iu2sn + imin - 1] * b21e[imin + 1];
- b21e[imin + 1] = work[iu2cs + imin - 1] * b21e[imin + 1];
- }
- temp = work[iu2cs + imin - 1] * b22d[imin] + work[iu2sn + imin - 1] *
- b22e[imin];
- b22e[imin] = work[iu2cs + imin - 1] * b22e[imin] - work[iu2sn + imin
- - 1] * b22d[imin];
- b22d[imin] = temp;
- b22bulge = work[iu2sn + imin - 1] * b22d[imin + 1];
- b22d[imin + 1] = work[iu2cs + imin - 1] * b22d[imin + 1];
-
- /* Inner loop: chase bulges from B11(IMIN,IMIN+2), */
- /* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to */
- /* bottom-right */
-
- i__1 = imax - 1;
- for (i__ = imin + 1; i__ <= i__1; ++i__) {
-
- /* Compute PHI(I-1) */
-
- x1 = sin(theta[i__ - 1]) * b11e[i__ - 1] + cos(theta[i__ - 1]) *
- b21e[i__ - 1];
- x2 = sin(theta[i__ - 1]) * b11bulge + cos(theta[i__ - 1]) *
- b21bulge;
- y1 = sin(theta[i__ - 1]) * b12d[i__ - 1] + cos(theta[i__ - 1]) *
- b22d[i__ - 1];
- y2 = sin(theta[i__ - 1]) * b12bulge + cos(theta[i__ - 1]) *
- b22bulge;
-
- /* Computing 2nd power */
- r__1 = x1;
- /* Computing 2nd power */
- r__2 = x2;
- /* Computing 2nd power */
- r__3 = y1;
- /* Computing 2nd power */
- r__4 = y2;
- phi[i__ - 1] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
- r__3 + r__4 * r__4));
-
- /* Determine if there are bulges to chase or if a new direct */
- /* summand has been reached */
-
- /* Computing 2nd power */
- r__1 = b11e[i__ - 1];
- /* Computing 2nd power */
- r__2 = b11bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b21e[i__ - 1];
- /* Computing 2nd power */
- r__2 = b21bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b12d[i__ - 1];
- /* Computing 2nd power */
- r__2 = b12bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b22d[i__ - 1];
- /* Computing 2nd power */
- r__2 = b22bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
-
- /* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I), */
- /* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge- */
- /* chasing by applying the original shift again. */
-
- if (! restart11 && ! restart21) {
- slartgp_(&x2, &x1, &work[iv1tsn + i__ - 1], &work[iv1tcs +
- i__ - 1], &r__);
- } else if (! restart11 && restart21) {
- slartgp_(&b11bulge, &b11e[i__ - 1], &work[iv1tsn + i__ - 1], &
- work[iv1tcs + i__ - 1], &r__);
- } else if (restart11 && ! restart21) {
- slartgp_(&b21bulge, &b21e[i__ - 1], &work[iv1tsn + i__ - 1], &
- work[iv1tcs + i__ - 1], &r__);
- } else if (mu <= nu) {
- slartgs_(&b11d[i__], &b11e[i__], &mu, &work[iv1tcs + i__ - 1],
- &work[iv1tsn + i__ - 1]);
- } else {
- slartgs_(&b21d[i__], &b21e[i__], &nu, &work[iv1tcs + i__ - 1],
- &work[iv1tsn + i__ - 1]);
- }
- work[iv1tcs + i__ - 1] = -work[iv1tcs + i__ - 1];
- work[iv1tsn + i__ - 1] = -work[iv1tsn + i__ - 1];
- if (! restart12 && ! restart22) {
- slartgp_(&y2, &y1, &work[iv2tsn + i__ - 2], &work[iv2tcs +
- i__ - 2], &r__);
- } else if (! restart12 && restart22) {
- slartgp_(&b12bulge, &b12d[i__ - 1], &work[iv2tsn + i__ - 2], &
- work[iv2tcs + i__ - 2], &r__);
- } else if (restart12 && ! restart22) {
- slartgp_(&b22bulge, &b22d[i__ - 1], &work[iv2tsn + i__ - 2], &
- work[iv2tcs + i__ - 2], &r__);
- } else if (nu < mu) {
- slartgs_(&b12e[i__ - 1], &b12d[i__], &nu, &work[iv2tcs + i__
- - 2], &work[iv2tsn + i__ - 2]);
- } else {
- slartgs_(&b22e[i__ - 1], &b22d[i__], &mu, &work[iv2tcs + i__
- - 2], &work[iv2tsn + i__ - 2]);
- }
-
- temp = work[iv1tcs + i__ - 1] * b11d[i__] + work[iv1tsn + i__ - 1]
- * b11e[i__];
- b11e[i__] = work[iv1tcs + i__ - 1] * b11e[i__] - work[iv1tsn +
- i__ - 1] * b11d[i__];
- b11d[i__] = temp;
- b11bulge = work[iv1tsn + i__ - 1] * b11d[i__ + 1];
- b11d[i__ + 1] = work[iv1tcs + i__ - 1] * b11d[i__ + 1];
- temp = work[iv1tcs + i__ - 1] * b21d[i__] + work[iv1tsn + i__ - 1]
- * b21e[i__];
- b21e[i__] = work[iv1tcs + i__ - 1] * b21e[i__] - work[iv1tsn +
- i__ - 1] * b21d[i__];
- b21d[i__] = temp;
- b21bulge = work[iv1tsn + i__ - 1] * b21d[i__ + 1];
- b21d[i__ + 1] = work[iv1tcs + i__ - 1] * b21d[i__ + 1];
- temp = work[iv2tcs + i__ - 2] * b12e[i__ - 1] + work[iv2tsn + i__
- - 2] * b12d[i__];
- b12d[i__] = work[iv2tcs + i__ - 2] * b12d[i__] - work[iv2tsn +
- i__ - 2] * b12e[i__ - 1];
- b12e[i__ - 1] = temp;
- b12bulge = work[iv2tsn + i__ - 2] * b12e[i__];
- b12e[i__] = work[iv2tcs + i__ - 2] * b12e[i__];
- temp = work[iv2tcs + i__ - 2] * b22e[i__ - 1] + work[iv2tsn + i__
- - 2] * b22d[i__];
- b22d[i__] = work[iv2tcs + i__ - 2] * b22d[i__] - work[iv2tsn +
- i__ - 2] * b22e[i__ - 1];
- b22e[i__ - 1] = temp;
- b22bulge = work[iv2tsn + i__ - 2] * b22e[i__];
- b22e[i__] = work[iv2tcs + i__ - 2] * b22e[i__];
-
- /* Compute THETA(I) */
-
- x1 = cos(phi[i__ - 1]) * b11d[i__] + sin(phi[i__ - 1]) * b12e[i__
- - 1];
- x2 = cos(phi[i__ - 1]) * b11bulge + sin(phi[i__ - 1]) * b12bulge;
- y1 = cos(phi[i__ - 1]) * b21d[i__] + sin(phi[i__ - 1]) * b22e[i__
- - 1];
- y2 = cos(phi[i__ - 1]) * b21bulge + sin(phi[i__ - 1]) * b22bulge;
-
- /* Computing 2nd power */
- r__1 = y1;
- /* Computing 2nd power */
- r__2 = y2;
- /* Computing 2nd power */
- r__3 = x1;
- /* Computing 2nd power */
- r__4 = x2;
- theta[i__] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
- r__3 + r__4 * r__4));
-
- /* Determine if there are bulges to chase or if a new direct */
- /* summand has been reached */
-
- /* Computing 2nd power */
- r__1 = b11d[i__];
- /* Computing 2nd power */
- r__2 = b11bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b12e[i__ - 1];
- /* Computing 2nd power */
- r__2 = b12bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b21d[i__];
- /* Computing 2nd power */
- r__2 = b21bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b22e[i__ - 1];
- /* Computing 2nd power */
- r__2 = b22bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
-
- /* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1), */
- /* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge- */
- /* chasing by applying the original shift again. */
-
- if (! restart11 && ! restart12) {
- slartgp_(&x2, &x1, &work[iu1sn + i__ - 1], &work[iu1cs + i__
- - 1], &r__);
- } else if (! restart11 && restart12) {
- slartgp_(&b11bulge, &b11d[i__], &work[iu1sn + i__ - 1], &work[
- iu1cs + i__ - 1], &r__);
- } else if (restart11 && ! restart12) {
- slartgp_(&b12bulge, &b12e[i__ - 1], &work[iu1sn + i__ - 1], &
- work[iu1cs + i__ - 1], &r__);
- } else if (mu <= nu) {
- slartgs_(&b11e[i__], &b11d[i__ + 1], &mu, &work[iu1cs + i__ -
- 1], &work[iu1sn + i__ - 1]);
- } else {
- slartgs_(&b12d[i__], &b12e[i__], &nu, &work[iu1cs + i__ - 1],
- &work[iu1sn + i__ - 1]);
- }
- if (! restart21 && ! restart22) {
- slartgp_(&y2, &y1, &work[iu2sn + i__ - 1], &work[iu2cs + i__
- - 1], &r__);
- } else if (! restart21 && restart22) {
- slartgp_(&b21bulge, &b21d[i__], &work[iu2sn + i__ - 1], &work[
- iu2cs + i__ - 1], &r__);
- } else if (restart21 && ! restart22) {
- slartgp_(&b22bulge, &b22e[i__ - 1], &work[iu2sn + i__ - 1], &
- work[iu2cs + i__ - 1], &r__);
- } else if (nu < mu) {
- slartgs_(&b21e[i__], &b21e[i__ + 1], &nu, &work[iu2cs + i__ -
- 1], &work[iu2sn + i__ - 1]);
- } else {
- slartgs_(&b22d[i__], &b22e[i__], &mu, &work[iu2cs + i__ - 1],
- &work[iu2sn + i__ - 1]);
- }
- work[iu2cs + i__ - 1] = -work[iu2cs + i__ - 1];
- work[iu2sn + i__ - 1] = -work[iu2sn + i__ - 1];
-
- temp = work[iu1cs + i__ - 1] * b11e[i__] + work[iu1sn + i__ - 1] *
- b11d[i__ + 1];
- b11d[i__ + 1] = work[iu1cs + i__ - 1] * b11d[i__ + 1] - work[
- iu1sn + i__ - 1] * b11e[i__];
- b11e[i__] = temp;
- if (i__ < imax - 1) {
- b11bulge = work[iu1sn + i__ - 1] * b11e[i__ + 1];
- b11e[i__ + 1] = work[iu1cs + i__ - 1] * b11e[i__ + 1];
- }
- temp = work[iu2cs + i__ - 1] * b21e[i__] + work[iu2sn + i__ - 1] *
- b21d[i__ + 1];
- b21d[i__ + 1] = work[iu2cs + i__ - 1] * b21d[i__ + 1] - work[
- iu2sn + i__ - 1] * b21e[i__];
- b21e[i__] = temp;
- if (i__ < imax - 1) {
- b21bulge = work[iu2sn + i__ - 1] * b21e[i__ + 1];
- b21e[i__ + 1] = work[iu2cs + i__ - 1] * b21e[i__ + 1];
- }
- temp = work[iu1cs + i__ - 1] * b12d[i__] + work[iu1sn + i__ - 1] *
- b12e[i__];
- b12e[i__] = work[iu1cs + i__ - 1] * b12e[i__] - work[iu1sn + i__
- - 1] * b12d[i__];
- b12d[i__] = temp;
- b12bulge = work[iu1sn + i__ - 1] * b12d[i__ + 1];
- b12d[i__ + 1] = work[iu1cs + i__ - 1] * b12d[i__ + 1];
- temp = work[iu2cs + i__ - 1] * b22d[i__] + work[iu2sn + i__ - 1] *
- b22e[i__];
- b22e[i__] = work[iu2cs + i__ - 1] * b22e[i__] - work[iu2sn + i__
- - 1] * b22d[i__];
- b22d[i__] = temp;
- b22bulge = work[iu2sn + i__ - 1] * b22d[i__ + 1];
- b22d[i__ + 1] = work[iu2cs + i__ - 1] * b22d[i__ + 1];
-
- }
-
- /* Compute PHI(IMAX-1) */
-
- x1 = sin(theta[imax - 1]) * b11e[imax - 1] + cos(theta[imax - 1]) *
- b21e[imax - 1];
- y1 = sin(theta[imax - 1]) * b12d[imax - 1] + cos(theta[imax - 1]) *
- b22d[imax - 1];
- y2 = sin(theta[imax - 1]) * b12bulge + cos(theta[imax - 1]) *
- b22bulge;
-
- /* Computing 2nd power */
- r__1 = y1;
- /* Computing 2nd power */
- r__2 = y2;
- phi[imax - 1] = atan2((abs(x1)), sqrt(r__1 * r__1 + r__2 * r__2));
-
- /* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX) */
-
- /* Computing 2nd power */
- r__1 = b12d[imax - 1];
- /* Computing 2nd power */
- r__2 = b12bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
- /* Computing 2nd power */
- r__1 = b22d[imax - 1];
- /* Computing 2nd power */
- r__2 = b22bulge;
- /* Computing 2nd power */
- r__3 = thresh;
- restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
-
- if (! restart12 && ! restart22) {
- slartgp_(&y2, &y1, &work[iv2tsn + imax - 2], &work[iv2tcs + imax
- - 2], &r__);
- } else if (! restart12 && restart22) {
- slartgp_(&b12bulge, &b12d[imax - 1], &work[iv2tsn + imax - 2], &
- work[iv2tcs + imax - 2], &r__);
- } else if (restart12 && ! restart22) {
- slartgp_(&b22bulge, &b22d[imax - 1], &work[iv2tsn + imax - 2], &
- work[iv2tcs + imax - 2], &r__);
- } else if (nu < mu) {
- slartgs_(&b12e[imax - 1], &b12d[imax], &nu, &work[iv2tcs + imax -
- 2], &work[iv2tsn + imax - 2]);
- } else {
- slartgs_(&b22e[imax - 1], &b22d[imax], &mu, &work[iv2tcs + imax -
- 2], &work[iv2tsn + imax - 2]);
- }
-
- temp = work[iv2tcs + imax - 2] * b12e[imax - 1] + work[iv2tsn + imax
- - 2] * b12d[imax];
- b12d[imax] = work[iv2tcs + imax - 2] * b12d[imax] - work[iv2tsn +
- imax - 2] * b12e[imax - 1];
- b12e[imax - 1] = temp;
- temp = work[iv2tcs + imax - 2] * b22e[imax - 1] + work[iv2tsn + imax
- - 2] * b22d[imax];
- b22d[imax] = work[iv2tcs + imax - 2] * b22d[imax] - work[iv2tsn +
- imax - 2] * b22e[imax - 1];
- b22e[imax - 1] = temp;
-
- /* Update singular vectors */
-
- if (wantu1) {
- if (colmajor) {
- i__1 = imax - imin + 1;
- slasr_("R", "V", "F", p, &i__1, &work[iu1cs + imin - 1], &
- work[iu1sn + imin - 1], &u1[imin * u1_dim1 + 1], ldu1);
- } else {
- i__1 = imax - imin + 1;
- slasr_("L", "V", "F", &i__1, p, &work[iu1cs + imin - 1], &
- work[iu1sn + imin - 1], &u1[imin + u1_dim1], ldu1);
- }
- }
- if (wantu2) {
- if (colmajor) {
- i__1 = *m - *p;
- i__2 = imax - imin + 1;
- slasr_("R", "V", "F", &i__1, &i__2, &work[iu2cs + imin - 1], &
- work[iu2sn + imin - 1], &u2[imin * u2_dim1 + 1], ldu2);
- } else {
- i__1 = imax - imin + 1;
- i__2 = *m - *p;
- slasr_("L", "V", "F", &i__1, &i__2, &work[iu2cs + imin - 1], &
- work[iu2sn + imin - 1], &u2[imin + u2_dim1], ldu2);
- }
- }
- if (wantv1t) {
- if (colmajor) {
- i__1 = imax - imin + 1;
- slasr_("L", "V", "F", &i__1, q, &work[iv1tcs + imin - 1], &
- work[iv1tsn + imin - 1], &v1t[imin + v1t_dim1], ldv1t);
- } else {
- i__1 = imax - imin + 1;
- slasr_("R", "V", "F", q, &i__1, &work[iv1tcs + imin - 1], &
- work[iv1tsn + imin - 1], &v1t[imin * v1t_dim1 + 1],
- ldv1t);
- }
- }
- if (wantv2t) {
- if (colmajor) {
- i__1 = imax - imin + 1;
- i__2 = *m - *q;
- slasr_("L", "V", "F", &i__1, &i__2, &work[iv2tcs + imin - 1],
- &work[iv2tsn + imin - 1], &v2t[imin + v2t_dim1],
- ldv2t);
- } else {
- i__1 = *m - *q;
- i__2 = imax - imin + 1;
- slasr_("R", "V", "F", &i__1, &i__2, &work[iv2tcs + imin - 1],
- &work[iv2tsn + imin - 1], &v2t[imin * v2t_dim1 + 1],
- ldv2t);
- }
- }
-
- /* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX) */
-
- if (b11e[imax - 1] + b21e[imax - 1] > 0.f) {
- b11d[imax] = -b11d[imax];
- b21d[imax] = -b21d[imax];
- if (wantv1t) {
- if (colmajor) {
- sscal_(q, &c_b35, &v1t[imax + v1t_dim1], ldv1t);
- } else {
- sscal_(q, &c_b35, &v1t[imax * v1t_dim1 + 1], &c__1);
- }
- }
- }
-
- /* Compute THETA(IMAX) */
-
- x1 = cos(phi[imax - 1]) * b11d[imax] + sin(phi[imax - 1]) * b12e[imax
- - 1];
- y1 = cos(phi[imax - 1]) * b21d[imax] + sin(phi[imax - 1]) * b22e[imax
- - 1];
-
- theta[imax] = atan2((abs(y1)), (abs(x1)));
-
- /* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX), */
- /* and B22(IMAX,IMAX-1) */
-
- if (b11d[imax] + b12e[imax - 1] < 0.f) {
- b12d[imax] = -b12d[imax];
- if (wantu1) {
- if (colmajor) {
- sscal_(p, &c_b35, &u1[imax * u1_dim1 + 1], &c__1);
- } else {
- sscal_(p, &c_b35, &u1[imax + u1_dim1], ldu1);
- }
- }
- }
- if (b21d[imax] + b22e[imax - 1] > 0.f) {
- b22d[imax] = -b22d[imax];
- if (wantu2) {
- if (colmajor) {
- i__1 = *m - *p;
- sscal_(&i__1, &c_b35, &u2[imax * u2_dim1 + 1], &c__1);
- } else {
- i__1 = *m - *p;
- sscal_(&i__1, &c_b35, &u2[imax + u2_dim1], ldu2);
- }
- }
- }
-
- /* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX) */
-
- if (b12d[imax] + b22d[imax] < 0.f) {
- if (wantv2t) {
- if (colmajor) {
- i__1 = *m - *q;
- sscal_(&i__1, &c_b35, &v2t[imax + v2t_dim1], ldv2t);
- } else {
- i__1 = *m - *q;
- sscal_(&i__1, &c_b35, &v2t[imax * v2t_dim1 + 1], &c__1);
- }
- }
- }
-
- /* Test for negligible sines or cosines */
-
- i__1 = imax;
- for (i__ = imin; i__ <= i__1; ++i__) {
- if (theta[i__] < thresh) {
- theta[i__] = 0.f;
- } else if (theta[i__] > 1.57079632679489662f - thresh) {
- theta[i__] = 1.57079632679489662f;
- }
- }
- i__1 = imax - 1;
- for (i__ = imin; i__ <= i__1; ++i__) {
- if (phi[i__] < thresh) {
- phi[i__] = 0.f;
- } else if (phi[i__] > 1.57079632679489662f - thresh) {
- phi[i__] = 1.57079632679489662f;
- }
- }
-
- /* Deflate */
-
- if (imax > 1) {
- while(phi[imax - 1] == 0.f) {
- --imax;
- if (imax <= 1) {
- myexit_();
- }
- }
- }
- if (imin > imax - 1) {
- imin = imax - 1;
- }
- if (imin > 1) {
- while(phi[imin - 1] != 0.f) {
- --imin;
- if (imin <= 1) {
- myexit_();
- }
- }
- }
-
- /* Repeat main iteration loop */
-
- }
-
- /* Postprocessing: order THETA from least to greatest */
-
- i__1 = *q;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- mini = i__;
- thetamin = theta[i__];
- i__2 = *q;
- for (j = i__ + 1; j <= i__2; ++j) {
- if (theta[j] < thetamin) {
- mini = j;
- thetamin = theta[j];
- }
- }
-
- if (mini != i__) {
- theta[mini] = theta[i__];
- theta[i__] = thetamin;
- if (colmajor) {
- if (wantu1) {
- sswap_(p, &u1[i__ * u1_dim1 + 1], &c__1, &u1[mini *
- u1_dim1 + 1], &c__1);
- }
- if (wantu2) {
- i__2 = *m - *p;
- sswap_(&i__2, &u2[i__ * u2_dim1 + 1], &c__1, &u2[mini *
- u2_dim1 + 1], &c__1);
- }
- if (wantv1t) {
- sswap_(q, &v1t[i__ + v1t_dim1], ldv1t, &v1t[mini +
- v1t_dim1], ldv1t);
- }
- if (wantv2t) {
- i__2 = *m - *q;
- sswap_(&i__2, &v2t[i__ + v2t_dim1], ldv2t, &v2t[mini +
- v2t_dim1], ldv2t);
- }
- } else {
- if (wantu1) {
- sswap_(p, &u1[i__ + u1_dim1], ldu1, &u1[mini + u1_dim1],
- ldu1);
- }
- if (wantu2) {
- i__2 = *m - *p;
- sswap_(&i__2, &u2[i__ + u2_dim1], ldu2, &u2[mini +
- u2_dim1], ldu2);
- }
- if (wantv1t) {
- sswap_(q, &v1t[i__ * v1t_dim1 + 1], &c__1, &v1t[mini *
- v1t_dim1 + 1], &c__1);
- }
- if (wantv2t) {
- i__2 = *m - *q;
- sswap_(&i__2, &v2t[i__ * v2t_dim1 + 1], &c__1, &v2t[mini *
- v2t_dim1 + 1], &c__1);
- }
- }
- }
-
- }
-
- return 0;
-
- /* End of SBBCSD */
-
- } /* sbbcsd_ */
-
|