You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtfsm.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublereal c_b23 = -1.;
  381. static doublereal c_b27 = 1.;
  382. /* > \brief \b DTFSM solves a matrix equation (one operand is a triangular matrix in RFP format). */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download DTFSM + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfsm.f
  389. "> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfsm.f
  392. "> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfsm.f
  395. "> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE DTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, */
  401. /* B, LDB ) */
  402. /* CHARACTER TRANSR, DIAG, SIDE, TRANS, UPLO */
  403. /* INTEGER LDB, M, N */
  404. /* DOUBLE PRECISION ALPHA */
  405. /* DOUBLE PRECISION A( 0: * ), B( 0: LDB-1, 0: * ) */
  406. /* > \par Purpose: */
  407. /* ============= */
  408. /* > */
  409. /* > \verbatim */
  410. /* > */
  411. /* > Level 3 BLAS like routine for A in RFP Format. */
  412. /* > */
  413. /* > DTFSM solves the matrix equation */
  414. /* > */
  415. /* > op( A )*X = alpha*B or X*op( A ) = alpha*B */
  416. /* > */
  417. /* > where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
  418. /* > non-unit, upper or lower triangular matrix and op( A ) is one of */
  419. /* > */
  420. /* > op( A ) = A or op( A ) = A**T. */
  421. /* > */
  422. /* > A is in Rectangular Full Packed (RFP) Format. */
  423. /* > */
  424. /* > The matrix X is overwritten on B. */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] TRANSR */
  429. /* > \verbatim */
  430. /* > TRANSR is CHARACTER*1 */
  431. /* > = 'N': The Normal Form of RFP A is stored; */
  432. /* > = 'T': The Transpose Form of RFP A is stored. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] SIDE */
  436. /* > \verbatim */
  437. /* > SIDE is CHARACTER*1 */
  438. /* > On entry, SIDE specifies whether op( A ) appears on the left */
  439. /* > or right of X as follows: */
  440. /* > */
  441. /* > SIDE = 'L' or 'l' op( A )*X = alpha*B. */
  442. /* > */
  443. /* > SIDE = 'R' or 'r' X*op( A ) = alpha*B. */
  444. /* > */
  445. /* > Unchanged on exit. */
  446. /* > \endverbatim */
  447. /* > */
  448. /* > \param[in] UPLO */
  449. /* > \verbatim */
  450. /* > UPLO is CHARACTER*1 */
  451. /* > On entry, UPLO specifies whether the RFP matrix A came from */
  452. /* > an upper or lower triangular matrix as follows: */
  453. /* > UPLO = 'U' or 'u' RFP A came from an upper triangular matrix */
  454. /* > UPLO = 'L' or 'l' RFP A came from a lower triangular matrix */
  455. /* > */
  456. /* > Unchanged on exit. */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[in] TRANS */
  460. /* > \verbatim */
  461. /* > TRANS is CHARACTER*1 */
  462. /* > On entry, TRANS specifies the form of op( A ) to be used */
  463. /* > in the matrix multiplication as follows: */
  464. /* > */
  465. /* > TRANS = 'N' or 'n' op( A ) = A. */
  466. /* > */
  467. /* > TRANS = 'T' or 't' op( A ) = A'. */
  468. /* > */
  469. /* > Unchanged on exit. */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[in] DIAG */
  473. /* > \verbatim */
  474. /* > DIAG is CHARACTER*1 */
  475. /* > On entry, DIAG specifies whether or not RFP A is unit */
  476. /* > triangular as follows: */
  477. /* > */
  478. /* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */
  479. /* > */
  480. /* > DIAG = 'N' or 'n' A is not assumed to be unit */
  481. /* > triangular. */
  482. /* > */
  483. /* > Unchanged on exit. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in] M */
  487. /* > \verbatim */
  488. /* > M is INTEGER */
  489. /* > On entry, M specifies the number of rows of B. M must be at */
  490. /* > least zero. */
  491. /* > Unchanged on exit. */
  492. /* > \endverbatim */
  493. /* > */
  494. /* > \param[in] N */
  495. /* > \verbatim */
  496. /* > N is INTEGER */
  497. /* > On entry, N specifies the number of columns of B. N must be */
  498. /* > at least zero. */
  499. /* > Unchanged on exit. */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[in] ALPHA */
  503. /* > \verbatim */
  504. /* > ALPHA is DOUBLE PRECISION */
  505. /* > On entry, ALPHA specifies the scalar alpha. When alpha is */
  506. /* > zero then A is not referenced and B need not be set before */
  507. /* > entry. */
  508. /* > Unchanged on exit. */
  509. /* > \endverbatim */
  510. /* > */
  511. /* > \param[in] A */
  512. /* > \verbatim */
  513. /* > A is DOUBLE PRECISION array, dimension (NT) */
  514. /* > NT = N*(N+1)/2. On entry, the matrix A in RFP Format. */
  515. /* > RFP Format is described by TRANSR, UPLO and N as follows: */
  516. /* > If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; */
  517. /* > K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If */
  518. /* > TRANSR = 'T' then RFP is the transpose of RFP A as */
  519. /* > defined when TRANSR = 'N'. The contents of RFP A are defined */
  520. /* > by UPLO as follows: If UPLO = 'U' the RFP A contains the NT */
  521. /* > elements of upper packed A either in normal or */
  522. /* > transpose Format. If UPLO = 'L' the RFP A contains */
  523. /* > the NT elements of lower packed A either in normal or */
  524. /* > transpose Format. The LDA of RFP A is (N+1)/2 when */
  525. /* > TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is */
  526. /* > even and is N when is odd. */
  527. /* > See the Note below for more details. Unchanged on exit. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in,out] B */
  531. /* > \verbatim */
  532. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  533. /* > Before entry, the leading m by n part of the array B must */
  534. /* > contain the right-hand side matrix B, and on exit is */
  535. /* > overwritten by the solution matrix X. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] LDB */
  539. /* > \verbatim */
  540. /* > LDB is INTEGER */
  541. /* > On entry, LDB specifies the first dimension of B as declared */
  542. /* > in the calling (sub) program. LDB must be at least */
  543. /* > f2cmax( 1, m ). */
  544. /* > Unchanged on exit. */
  545. /* > \endverbatim */
  546. /* Authors: */
  547. /* ======== */
  548. /* > \author Univ. of Tennessee */
  549. /* > \author Univ. of California Berkeley */
  550. /* > \author Univ. of Colorado Denver */
  551. /* > \author NAG Ltd. */
  552. /* > \date December 2016 */
  553. /* > \ingroup doubleOTHERcomputational */
  554. /* > \par Further Details: */
  555. /* ===================== */
  556. /* > */
  557. /* > \verbatim */
  558. /* > */
  559. /* > We first consider Rectangular Full Packed (RFP) Format when N is */
  560. /* > even. We give an example where N = 6. */
  561. /* > */
  562. /* > AP is Upper AP is Lower */
  563. /* > */
  564. /* > 00 01 02 03 04 05 00 */
  565. /* > 11 12 13 14 15 10 11 */
  566. /* > 22 23 24 25 20 21 22 */
  567. /* > 33 34 35 30 31 32 33 */
  568. /* > 44 45 40 41 42 43 44 */
  569. /* > 55 50 51 52 53 54 55 */
  570. /* > */
  571. /* > */
  572. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  573. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  574. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  575. /* > the transpose of the first three columns of AP upper. */
  576. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  577. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  578. /* > the transpose of the last three columns of AP lower. */
  579. /* > This covers the case N even and TRANSR = 'N'. */
  580. /* > */
  581. /* > RFP A RFP A */
  582. /* > */
  583. /* > 03 04 05 33 43 53 */
  584. /* > 13 14 15 00 44 54 */
  585. /* > 23 24 25 10 11 55 */
  586. /* > 33 34 35 20 21 22 */
  587. /* > 00 44 45 30 31 32 */
  588. /* > 01 11 55 40 41 42 */
  589. /* > 02 12 22 50 51 52 */
  590. /* > */
  591. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  592. /* > transpose of RFP A above. One therefore gets: */
  593. /* > */
  594. /* > */
  595. /* > RFP A RFP A */
  596. /* > */
  597. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  598. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  599. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  600. /* > */
  601. /* > */
  602. /* > We then consider Rectangular Full Packed (RFP) Format when N is */
  603. /* > odd. We give an example where N = 5. */
  604. /* > */
  605. /* > AP is Upper AP is Lower */
  606. /* > */
  607. /* > 00 01 02 03 04 00 */
  608. /* > 11 12 13 14 10 11 */
  609. /* > 22 23 24 20 21 22 */
  610. /* > 33 34 30 31 32 33 */
  611. /* > 44 40 41 42 43 44 */
  612. /* > */
  613. /* > */
  614. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  615. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  616. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  617. /* > the transpose of the first two columns of AP upper. */
  618. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  619. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  620. /* > the transpose of the last two columns of AP lower. */
  621. /* > This covers the case N odd and TRANSR = 'N'. */
  622. /* > */
  623. /* > RFP A RFP A */
  624. /* > */
  625. /* > 02 03 04 00 33 43 */
  626. /* > 12 13 14 10 11 44 */
  627. /* > 22 23 24 20 21 22 */
  628. /* > 00 33 34 30 31 32 */
  629. /* > 01 11 44 40 41 42 */
  630. /* > */
  631. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  632. /* > transpose of RFP A above. One therefore gets: */
  633. /* > */
  634. /* > RFP A RFP A */
  635. /* > */
  636. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  637. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  638. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  639. /* > \endverbatim */
  640. /* ===================================================================== */
  641. /* Subroutine */ int dtfsm_(char *transr, char *side, char *uplo, char *trans,
  642. char *diag, integer *m, integer *n, doublereal *alpha, doublereal *a,
  643. doublereal *b, integer *ldb)
  644. {
  645. /* System generated locals */
  646. integer b_dim1, b_offset, i__1, i__2;
  647. /* Local variables */
  648. integer info, i__, j, k;
  649. logical normaltransr;
  650. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  651. integer *, doublereal *, doublereal *, integer *, doublereal *,
  652. integer *, doublereal *, doublereal *, integer *);
  653. logical lside;
  654. extern logical lsame_(char *, char *);
  655. logical lower;
  656. extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
  657. integer *, integer *, doublereal *, doublereal *, integer *,
  658. doublereal *, integer *);
  659. integer m1, m2, n1, n2;
  660. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  661. logical misodd, nisodd, notrans;
  662. /* -- LAPACK computational routine (version 3.7.0) -- */
  663. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  664. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  665. /* December 2016 */
  666. /* ===================================================================== */
  667. /* Test the input parameters. */
  668. /* Parameter adjustments */
  669. b_dim1 = *ldb - 1 - 0 + 1;
  670. b_offset = 0 + b_dim1 * 0;
  671. b -= b_offset;
  672. /* Function Body */
  673. info = 0;
  674. normaltransr = lsame_(transr, "N");
  675. lside = lsame_(side, "L");
  676. lower = lsame_(uplo, "L");
  677. notrans = lsame_(trans, "N");
  678. if (! normaltransr && ! lsame_(transr, "T")) {
  679. info = -1;
  680. } else if (! lside && ! lsame_(side, "R")) {
  681. info = -2;
  682. } else if (! lower && ! lsame_(uplo, "U")) {
  683. info = -3;
  684. } else if (! notrans && ! lsame_(trans, "T")) {
  685. info = -4;
  686. } else if (! lsame_(diag, "N") && ! lsame_(diag,
  687. "U")) {
  688. info = -5;
  689. } else if (*m < 0) {
  690. info = -6;
  691. } else if (*n < 0) {
  692. info = -7;
  693. } else if (*ldb < f2cmax(1,*m)) {
  694. info = -11;
  695. }
  696. if (info != 0) {
  697. i__1 = -info;
  698. xerbla_("DTFSM ", &i__1, (ftnlen)6);
  699. return 0;
  700. }
  701. /* Quick return when ( (N.EQ.0).OR.(M.EQ.0) ) */
  702. if (*m == 0 || *n == 0) {
  703. return 0;
  704. }
  705. /* Quick return when ALPHA.EQ.(0D+0) */
  706. if (*alpha == 0.) {
  707. i__1 = *n - 1;
  708. for (j = 0; j <= i__1; ++j) {
  709. i__2 = *m - 1;
  710. for (i__ = 0; i__ <= i__2; ++i__) {
  711. b[i__ + j * b_dim1] = 0.;
  712. /* L10: */
  713. }
  714. /* L20: */
  715. }
  716. return 0;
  717. }
  718. if (lside) {
  719. /* SIDE = 'L' */
  720. /* A is M-by-M. */
  721. /* If M is odd, set NISODD = .TRUE., and M1 and M2. */
  722. /* If M is even, NISODD = .FALSE., and M. */
  723. if (*m % 2 == 0) {
  724. misodd = FALSE_;
  725. k = *m / 2;
  726. } else {
  727. misodd = TRUE_;
  728. if (lower) {
  729. m2 = *m / 2;
  730. m1 = *m - m2;
  731. } else {
  732. m1 = *m / 2;
  733. m2 = *m - m1;
  734. }
  735. }
  736. if (misodd) {
  737. /* SIDE = 'L' and N is odd */
  738. if (normaltransr) {
  739. /* SIDE = 'L', N is odd, and TRANSR = 'N' */
  740. if (lower) {
  741. /* SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'L' */
  742. if (notrans) {
  743. /* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and */
  744. /* TRANS = 'N' */
  745. if (*m == 1) {
  746. dtrsm_("L", "L", "N", diag, &m1, n, alpha, a, m, &
  747. b[b_offset], ldb);
  748. } else {
  749. dtrsm_("L", "L", "N", diag, &m1, n, alpha, a, m, &
  750. b[b_offset], ldb);
  751. dgemm_("N", "N", &m2, n, &m1, &c_b23, &a[m1], m, &
  752. b[b_offset], ldb, alpha, &b[m1], ldb);
  753. dtrsm_("L", "U", "T", diag, &m2, n, &c_b27, &a[*m]
  754. , m, &b[m1], ldb);
  755. }
  756. } else {
  757. /* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'L', and */
  758. /* TRANS = 'T' */
  759. if (*m == 1) {
  760. dtrsm_("L", "L", "T", diag, &m1, n, alpha, a, m, &
  761. b[b_offset], ldb);
  762. } else {
  763. dtrsm_("L", "U", "N", diag, &m2, n, alpha, &a[*m],
  764. m, &b[m1], ldb);
  765. dgemm_("T", "N", &m1, n, &m2, &c_b23, &a[m1], m, &
  766. b[m1], ldb, alpha, &b[b_offset], ldb);
  767. dtrsm_("L", "L", "T", diag, &m1, n, &c_b27, a, m,
  768. &b[b_offset], ldb);
  769. }
  770. }
  771. } else {
  772. /* SIDE ='L', N is odd, TRANSR = 'N', and UPLO = 'U' */
  773. if (! notrans) {
  774. /* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and */
  775. /* TRANS = 'N' */
  776. dtrsm_("L", "L", "N", diag, &m1, n, alpha, &a[m2], m,
  777. &b[b_offset], ldb);
  778. dgemm_("T", "N", &m2, n, &m1, &c_b23, a, m, &b[
  779. b_offset], ldb, alpha, &b[m1], ldb);
  780. dtrsm_("L", "U", "T", diag, &m2, n, &c_b27, &a[m1], m,
  781. &b[m1], ldb);
  782. } else {
  783. /* SIDE ='L', N is odd, TRANSR = 'N', UPLO = 'U', and */
  784. /* TRANS = 'T' */
  785. dtrsm_("L", "U", "N", diag, &m2, n, alpha, &a[m1], m,
  786. &b[m1], ldb);
  787. dgemm_("N", "N", &m1, n, &m2, &c_b23, a, m, &b[m1],
  788. ldb, alpha, &b[b_offset], ldb);
  789. dtrsm_("L", "L", "T", diag, &m1, n, &c_b27, &a[m2], m,
  790. &b[b_offset], ldb);
  791. }
  792. }
  793. } else {
  794. /* SIDE = 'L', N is odd, and TRANSR = 'T' */
  795. if (lower) {
  796. /* SIDE ='L', N is odd, TRANSR = 'T', and UPLO = 'L' */
  797. if (notrans) {
  798. /* SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'L', and */
  799. /* TRANS = 'N' */
  800. if (*m == 1) {
  801. dtrsm_("L", "U", "T", diag, &m1, n, alpha, a, &m1,
  802. &b[b_offset], ldb);
  803. } else {
  804. dtrsm_("L", "U", "T", diag, &m1, n, alpha, a, &m1,
  805. &b[b_offset], ldb);
  806. dgemm_("T", "N", &m2, n, &m1, &c_b23, &a[m1 * m1],
  807. &m1, &b[b_offset], ldb, alpha, &b[m1],
  808. ldb);
  809. dtrsm_("L", "L", "N", diag, &m2, n, &c_b27, &a[1],
  810. &m1, &b[m1], ldb);
  811. }
  812. } else {
  813. /* SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'L', and */
  814. /* TRANS = 'T' */
  815. if (*m == 1) {
  816. dtrsm_("L", "U", "N", diag, &m1, n, alpha, a, &m1,
  817. &b[b_offset], ldb);
  818. } else {
  819. dtrsm_("L", "L", "T", diag, &m2, n, alpha, &a[1],
  820. &m1, &b[m1], ldb);
  821. dgemm_("N", "N", &m1, n, &m2, &c_b23, &a[m1 * m1],
  822. &m1, &b[m1], ldb, alpha, &b[b_offset],
  823. ldb);
  824. dtrsm_("L", "U", "N", diag, &m1, n, &c_b27, a, &
  825. m1, &b[b_offset], ldb);
  826. }
  827. }
  828. } else {
  829. /* SIDE ='L', N is odd, TRANSR = 'T', and UPLO = 'U' */
  830. if (! notrans) {
  831. /* SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'U', and */
  832. /* TRANS = 'N' */
  833. dtrsm_("L", "U", "T", diag, &m1, n, alpha, &a[m2 * m2]
  834. , &m2, &b[b_offset], ldb);
  835. dgemm_("N", "N", &m2, n, &m1, &c_b23, a, &m2, &b[
  836. b_offset], ldb, alpha, &b[m1], ldb);
  837. dtrsm_("L", "L", "N", diag, &m2, n, &c_b27, &a[m1 *
  838. m2], &m2, &b[m1], ldb);
  839. } else {
  840. /* SIDE ='L', N is odd, TRANSR = 'T', UPLO = 'U', and */
  841. /* TRANS = 'T' */
  842. dtrsm_("L", "L", "T", diag, &m2, n, alpha, &a[m1 * m2]
  843. , &m2, &b[m1], ldb);
  844. dgemm_("T", "N", &m1, n, &m2, &c_b23, a, &m2, &b[m1],
  845. ldb, alpha, &b[b_offset], ldb);
  846. dtrsm_("L", "U", "N", diag, &m1, n, &c_b27, &a[m2 *
  847. m2], &m2, &b[b_offset], ldb);
  848. }
  849. }
  850. }
  851. } else {
  852. /* SIDE = 'L' and N is even */
  853. if (normaltransr) {
  854. /* SIDE = 'L', N is even, and TRANSR = 'N' */
  855. if (lower) {
  856. /* SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'L' */
  857. if (notrans) {
  858. /* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L', */
  859. /* and TRANS = 'N' */
  860. i__1 = *m + 1;
  861. dtrsm_("L", "L", "N", diag, &k, n, alpha, &a[1], &
  862. i__1, &b[b_offset], ldb);
  863. i__1 = *m + 1;
  864. dgemm_("N", "N", &k, n, &k, &c_b23, &a[k + 1], &i__1,
  865. &b[b_offset], ldb, alpha, &b[k], ldb);
  866. i__1 = *m + 1;
  867. dtrsm_("L", "U", "T", diag, &k, n, &c_b27, a, &i__1, &
  868. b[k], ldb);
  869. } else {
  870. /* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'L', */
  871. /* and TRANS = 'T' */
  872. i__1 = *m + 1;
  873. dtrsm_("L", "U", "N", diag, &k, n, alpha, a, &i__1, &
  874. b[k], ldb);
  875. i__1 = *m + 1;
  876. dgemm_("T", "N", &k, n, &k, &c_b23, &a[k + 1], &i__1,
  877. &b[k], ldb, alpha, &b[b_offset], ldb);
  878. i__1 = *m + 1;
  879. dtrsm_("L", "L", "T", diag, &k, n, &c_b27, &a[1], &
  880. i__1, &b[b_offset], ldb);
  881. }
  882. } else {
  883. /* SIDE ='L', N is even, TRANSR = 'N', and UPLO = 'U' */
  884. if (! notrans) {
  885. /* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U', */
  886. /* and TRANS = 'N' */
  887. i__1 = *m + 1;
  888. dtrsm_("L", "L", "N", diag, &k, n, alpha, &a[k + 1], &
  889. i__1, &b[b_offset], ldb);
  890. i__1 = *m + 1;
  891. dgemm_("T", "N", &k, n, &k, &c_b23, a, &i__1, &b[
  892. b_offset], ldb, alpha, &b[k], ldb);
  893. i__1 = *m + 1;
  894. dtrsm_("L", "U", "T", diag, &k, n, &c_b27, &a[k], &
  895. i__1, &b[k], ldb);
  896. } else {
  897. /* SIDE ='L', N is even, TRANSR = 'N', UPLO = 'U', */
  898. /* and TRANS = 'T' */
  899. i__1 = *m + 1;
  900. dtrsm_("L", "U", "N", diag, &k, n, alpha, &a[k], &
  901. i__1, &b[k], ldb);
  902. i__1 = *m + 1;
  903. dgemm_("N", "N", &k, n, &k, &c_b23, a, &i__1, &b[k],
  904. ldb, alpha, &b[b_offset], ldb);
  905. i__1 = *m + 1;
  906. dtrsm_("L", "L", "T", diag, &k, n, &c_b27, &a[k + 1],
  907. &i__1, &b[b_offset], ldb);
  908. }
  909. }
  910. } else {
  911. /* SIDE = 'L', N is even, and TRANSR = 'T' */
  912. if (lower) {
  913. /* SIDE ='L', N is even, TRANSR = 'T', and UPLO = 'L' */
  914. if (notrans) {
  915. /* SIDE ='L', N is even, TRANSR = 'T', UPLO = 'L', */
  916. /* and TRANS = 'N' */
  917. dtrsm_("L", "U", "T", diag, &k, n, alpha, &a[k], &k, &
  918. b[b_offset], ldb);
  919. dgemm_("T", "N", &k, n, &k, &c_b23, &a[k * (k + 1)], &
  920. k, &b[b_offset], ldb, alpha, &b[k], ldb);
  921. dtrsm_("L", "L", "N", diag, &k, n, &c_b27, a, &k, &b[
  922. k], ldb);
  923. } else {
  924. /* SIDE ='L', N is even, TRANSR = 'T', UPLO = 'L', */
  925. /* and TRANS = 'T' */
  926. dtrsm_("L", "L", "T", diag, &k, n, alpha, a, &k, &b[k]
  927. , ldb);
  928. dgemm_("N", "N", &k, n, &k, &c_b23, &a[k * (k + 1)], &
  929. k, &b[k], ldb, alpha, &b[b_offset], ldb);
  930. dtrsm_("L", "U", "N", diag, &k, n, &c_b27, &a[k], &k,
  931. &b[b_offset], ldb);
  932. }
  933. } else {
  934. /* SIDE ='L', N is even, TRANSR = 'T', and UPLO = 'U' */
  935. if (! notrans) {
  936. /* SIDE ='L', N is even, TRANSR = 'T', UPLO = 'U', */
  937. /* and TRANS = 'N' */
  938. dtrsm_("L", "U", "T", diag, &k, n, alpha, &a[k * (k +
  939. 1)], &k, &b[b_offset], ldb);
  940. dgemm_("N", "N", &k, n, &k, &c_b23, a, &k, &b[
  941. b_offset], ldb, alpha, &b[k], ldb);
  942. dtrsm_("L", "L", "N", diag, &k, n, &c_b27, &a[k * k],
  943. &k, &b[k], ldb);
  944. } else {
  945. /* SIDE ='L', N is even, TRANSR = 'T', UPLO = 'U', */
  946. /* and TRANS = 'T' */
  947. dtrsm_("L", "L", "T", diag, &k, n, alpha, &a[k * k], &
  948. k, &b[k], ldb);
  949. dgemm_("T", "N", &k, n, &k, &c_b23, a, &k, &b[k], ldb,
  950. alpha, &b[b_offset], ldb);
  951. dtrsm_("L", "U", "N", diag, &k, n, &c_b27, &a[k * (k
  952. + 1)], &k, &b[b_offset], ldb);
  953. }
  954. }
  955. }
  956. }
  957. } else {
  958. /* SIDE = 'R' */
  959. /* A is N-by-N. */
  960. /* If N is odd, set NISODD = .TRUE., and N1 and N2. */
  961. /* If N is even, NISODD = .FALSE., and K. */
  962. if (*n % 2 == 0) {
  963. nisodd = FALSE_;
  964. k = *n / 2;
  965. } else {
  966. nisodd = TRUE_;
  967. if (lower) {
  968. n2 = *n / 2;
  969. n1 = *n - n2;
  970. } else {
  971. n1 = *n / 2;
  972. n2 = *n - n1;
  973. }
  974. }
  975. if (nisodd) {
  976. /* SIDE = 'R' and N is odd */
  977. if (normaltransr) {
  978. /* SIDE = 'R', N is odd, and TRANSR = 'N' */
  979. if (lower) {
  980. /* SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'L' */
  981. if (notrans) {
  982. /* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and */
  983. /* TRANS = 'N' */
  984. dtrsm_("R", "U", "T", diag, m, &n2, alpha, &a[*n], n,
  985. &b[n1 * b_dim1], ldb);
  986. dgemm_("N", "N", m, &n1, &n2, &c_b23, &b[n1 * b_dim1],
  987. ldb, &a[n1], n, alpha, b, ldb);
  988. dtrsm_("R", "L", "N", diag, m, &n1, &c_b27, a, n, b,
  989. ldb);
  990. } else {
  991. /* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'L', and */
  992. /* TRANS = 'T' */
  993. dtrsm_("R", "L", "T", diag, m, &n1, alpha, a, n, b,
  994. ldb);
  995. dgemm_("N", "T", m, &n2, &n1, &c_b23, b, ldb, &a[n1],
  996. n, alpha, &b[n1 * b_dim1], ldb);
  997. dtrsm_("R", "U", "N", diag, m, &n2, &c_b27, &a[*n], n,
  998. &b[n1 * b_dim1], ldb);
  999. }
  1000. } else {
  1001. /* SIDE ='R', N is odd, TRANSR = 'N', and UPLO = 'U' */
  1002. if (notrans) {
  1003. /* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and */
  1004. /* TRANS = 'N' */
  1005. dtrsm_("R", "L", "T", diag, m, &n1, alpha, &a[n2], n,
  1006. b, ldb);
  1007. dgemm_("N", "N", m, &n2, &n1, &c_b23, b, ldb, a, n,
  1008. alpha, &b[n1 * b_dim1], ldb);
  1009. dtrsm_("R", "U", "N", diag, m, &n2, &c_b27, &a[n1], n,
  1010. &b[n1 * b_dim1], ldb);
  1011. } else {
  1012. /* SIDE ='R', N is odd, TRANSR = 'N', UPLO = 'U', and */
  1013. /* TRANS = 'T' */
  1014. dtrsm_("R", "U", "T", diag, m, &n2, alpha, &a[n1], n,
  1015. &b[n1 * b_dim1], ldb);
  1016. dgemm_("N", "T", m, &n1, &n2, &c_b23, &b[n1 * b_dim1],
  1017. ldb, a, n, alpha, b, ldb);
  1018. dtrsm_("R", "L", "N", diag, m, &n1, &c_b27, &a[n2], n,
  1019. b, ldb);
  1020. }
  1021. }
  1022. } else {
  1023. /* SIDE = 'R', N is odd, and TRANSR = 'T' */
  1024. if (lower) {
  1025. /* SIDE ='R', N is odd, TRANSR = 'T', and UPLO = 'L' */
  1026. if (notrans) {
  1027. /* SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'L', and */
  1028. /* TRANS = 'N' */
  1029. dtrsm_("R", "L", "N", diag, m, &n2, alpha, &a[1], &n1,
  1030. &b[n1 * b_dim1], ldb);
  1031. dgemm_("N", "T", m, &n1, &n2, &c_b23, &b[n1 * b_dim1],
  1032. ldb, &a[n1 * n1], &n1, alpha, b, ldb);
  1033. dtrsm_("R", "U", "T", diag, m, &n1, &c_b27, a, &n1, b,
  1034. ldb);
  1035. } else {
  1036. /* SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'L', and */
  1037. /* TRANS = 'T' */
  1038. dtrsm_("R", "U", "N", diag, m, &n1, alpha, a, &n1, b,
  1039. ldb);
  1040. dgemm_("N", "N", m, &n2, &n1, &c_b23, b, ldb, &a[n1 *
  1041. n1], &n1, alpha, &b[n1 * b_dim1], ldb);
  1042. dtrsm_("R", "L", "T", diag, m, &n2, &c_b27, &a[1], &
  1043. n1, &b[n1 * b_dim1], ldb);
  1044. }
  1045. } else {
  1046. /* SIDE ='R', N is odd, TRANSR = 'T', and UPLO = 'U' */
  1047. if (notrans) {
  1048. /* SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'U', and */
  1049. /* TRANS = 'N' */
  1050. dtrsm_("R", "U", "N", diag, m, &n1, alpha, &a[n2 * n2]
  1051. , &n2, b, ldb);
  1052. dgemm_("N", "T", m, &n2, &n1, &c_b23, b, ldb, a, &n2,
  1053. alpha, &b[n1 * b_dim1], ldb);
  1054. dtrsm_("R", "L", "T", diag, m, &n2, &c_b27, &a[n1 *
  1055. n2], &n2, &b[n1 * b_dim1], ldb);
  1056. } else {
  1057. /* SIDE ='R', N is odd, TRANSR = 'T', UPLO = 'U', and */
  1058. /* TRANS = 'T' */
  1059. dtrsm_("R", "L", "N", diag, m, &n2, alpha, &a[n1 * n2]
  1060. , &n2, &b[n1 * b_dim1], ldb);
  1061. dgemm_("N", "N", m, &n1, &n2, &c_b23, &b[n1 * b_dim1],
  1062. ldb, a, &n2, alpha, b, ldb);
  1063. dtrsm_("R", "U", "T", diag, m, &n1, &c_b27, &a[n2 *
  1064. n2], &n2, b, ldb);
  1065. }
  1066. }
  1067. }
  1068. } else {
  1069. /* SIDE = 'R' and N is even */
  1070. if (normaltransr) {
  1071. /* SIDE = 'R', N is even, and TRANSR = 'N' */
  1072. if (lower) {
  1073. /* SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'L' */
  1074. if (notrans) {
  1075. /* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L', */
  1076. /* and TRANS = 'N' */
  1077. i__1 = *n + 1;
  1078. dtrsm_("R", "U", "T", diag, m, &k, alpha, a, &i__1, &
  1079. b[k * b_dim1], ldb);
  1080. i__1 = *n + 1;
  1081. dgemm_("N", "N", m, &k, &k, &c_b23, &b[k * b_dim1],
  1082. ldb, &a[k + 1], &i__1, alpha, b, ldb);
  1083. i__1 = *n + 1;
  1084. dtrsm_("R", "L", "N", diag, m, &k, &c_b27, &a[1], &
  1085. i__1, b, ldb);
  1086. } else {
  1087. /* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'L', */
  1088. /* and TRANS = 'T' */
  1089. i__1 = *n + 1;
  1090. dtrsm_("R", "L", "T", diag, m, &k, alpha, &a[1], &
  1091. i__1, b, ldb);
  1092. i__1 = *n + 1;
  1093. dgemm_("N", "T", m, &k, &k, &c_b23, b, ldb, &a[k + 1],
  1094. &i__1, alpha, &b[k * b_dim1], ldb);
  1095. i__1 = *n + 1;
  1096. dtrsm_("R", "U", "N", diag, m, &k, &c_b27, a, &i__1, &
  1097. b[k * b_dim1], ldb);
  1098. }
  1099. } else {
  1100. /* SIDE ='R', N is even, TRANSR = 'N', and UPLO = 'U' */
  1101. if (notrans) {
  1102. /* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U', */
  1103. /* and TRANS = 'N' */
  1104. i__1 = *n + 1;
  1105. dtrsm_("R", "L", "T", diag, m, &k, alpha, &a[k + 1], &
  1106. i__1, b, ldb);
  1107. i__1 = *n + 1;
  1108. dgemm_("N", "N", m, &k, &k, &c_b23, b, ldb, a, &i__1,
  1109. alpha, &b[k * b_dim1], ldb);
  1110. i__1 = *n + 1;
  1111. dtrsm_("R", "U", "N", diag, m, &k, &c_b27, &a[k], &
  1112. i__1, &b[k * b_dim1], ldb);
  1113. } else {
  1114. /* SIDE ='R', N is even, TRANSR = 'N', UPLO = 'U', */
  1115. /* and TRANS = 'T' */
  1116. i__1 = *n + 1;
  1117. dtrsm_("R", "U", "T", diag, m, &k, alpha, &a[k], &
  1118. i__1, &b[k * b_dim1], ldb);
  1119. i__1 = *n + 1;
  1120. dgemm_("N", "T", m, &k, &k, &c_b23, &b[k * b_dim1],
  1121. ldb, a, &i__1, alpha, b, ldb);
  1122. i__1 = *n + 1;
  1123. dtrsm_("R", "L", "N", diag, m, &k, &c_b27, &a[k + 1],
  1124. &i__1, b, ldb);
  1125. }
  1126. }
  1127. } else {
  1128. /* SIDE = 'R', N is even, and TRANSR = 'T' */
  1129. if (lower) {
  1130. /* SIDE ='R', N is even, TRANSR = 'T', and UPLO = 'L' */
  1131. if (notrans) {
  1132. /* SIDE ='R', N is even, TRANSR = 'T', UPLO = 'L', */
  1133. /* and TRANS = 'N' */
  1134. dtrsm_("R", "L", "N", diag, m, &k, alpha, a, &k, &b[k
  1135. * b_dim1], ldb);
  1136. dgemm_("N", "T", m, &k, &k, &c_b23, &b[k * b_dim1],
  1137. ldb, &a[(k + 1) * k], &k, alpha, b, ldb);
  1138. dtrsm_("R", "U", "T", diag, m, &k, &c_b27, &a[k], &k,
  1139. b, ldb);
  1140. } else {
  1141. /* SIDE ='R', N is even, TRANSR = 'T', UPLO = 'L', */
  1142. /* and TRANS = 'T' */
  1143. dtrsm_("R", "U", "N", diag, m, &k, alpha, &a[k], &k,
  1144. b, ldb);
  1145. dgemm_("N", "N", m, &k, &k, &c_b23, b, ldb, &a[(k + 1)
  1146. * k], &k, alpha, &b[k * b_dim1], ldb);
  1147. dtrsm_("R", "L", "T", diag, m, &k, &c_b27, a, &k, &b[
  1148. k * b_dim1], ldb);
  1149. }
  1150. } else {
  1151. /* SIDE ='R', N is even, TRANSR = 'T', and UPLO = 'U' */
  1152. if (notrans) {
  1153. /* SIDE ='R', N is even, TRANSR = 'T', UPLO = 'U', */
  1154. /* and TRANS = 'N' */
  1155. dtrsm_("R", "U", "N", diag, m, &k, alpha, &a[(k + 1) *
  1156. k], &k, b, ldb);
  1157. dgemm_("N", "T", m, &k, &k, &c_b23, b, ldb, a, &k,
  1158. alpha, &b[k * b_dim1], ldb);
  1159. dtrsm_("R", "L", "T", diag, m, &k, &c_b27, &a[k * k],
  1160. &k, &b[k * b_dim1], ldb);
  1161. } else {
  1162. /* SIDE ='R', N is even, TRANSR = 'T', UPLO = 'U', */
  1163. /* and TRANS = 'T' */
  1164. dtrsm_("R", "L", "N", diag, m, &k, alpha, &a[k * k], &
  1165. k, &b[k * b_dim1], ldb);
  1166. dgemm_("N", "N", m, &k, &k, &c_b23, &b[k * b_dim1],
  1167. ldb, a, &k, alpha, b, ldb);
  1168. dtrsm_("R", "U", "T", diag, m, &k, &c_b27, &a[(k + 1)
  1169. * k], &k, b, ldb);
  1170. }
  1171. }
  1172. }
  1173. }
  1174. }
  1175. return 0;
  1176. /* End of DTFSM */
  1177. } /* dtfsm_ */