You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstedc.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__9 = 9;
  381. static integer c__0 = 0;
  382. static integer c__2 = 2;
  383. static doublereal c_b17 = 0.;
  384. static doublereal c_b18 = 1.;
  385. static integer c__1 = 1;
  386. /* > \brief \b DSTEDC */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download DSTEDC + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.
  393. f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.
  396. f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.
  399. f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, */
  405. /* LIWORK, INFO ) */
  406. /* CHARACTER COMPZ */
  407. /* INTEGER INFO, LDZ, LIWORK, LWORK, N */
  408. /* INTEGER IWORK( * ) */
  409. /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
  410. /* > \par Purpose: */
  411. /* ============= */
  412. /* > */
  413. /* > \verbatim */
  414. /* > */
  415. /* > DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  416. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  417. /* > The eigenvectors of a full or band real symmetric matrix can also be */
  418. /* > found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
  419. /* > matrix to tridiagonal form. */
  420. /* > */
  421. /* > This code makes very mild assumptions about floating point */
  422. /* > arithmetic. It will work on machines with a guard digit in */
  423. /* > add/subtract, or on those binary machines without guard digits */
  424. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  425. /* > It could conceivably fail on hexadecimal or decimal machines */
  426. /* > without guard digits, but we know of none. See DLAED3 for details. */
  427. /* > \endverbatim */
  428. /* Arguments: */
  429. /* ========== */
  430. /* > \param[in] COMPZ */
  431. /* > \verbatim */
  432. /* > COMPZ is CHARACTER*1 */
  433. /* > = 'N': Compute eigenvalues only. */
  434. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  435. /* > = 'V': Compute eigenvectors of original dense symmetric */
  436. /* > matrix also. On entry, Z contains the orthogonal */
  437. /* > matrix used to reduce the original matrix to */
  438. /* > tridiagonal form. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in] N */
  442. /* > \verbatim */
  443. /* > N is INTEGER */
  444. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in,out] D */
  448. /* > \verbatim */
  449. /* > D is DOUBLE PRECISION array, dimension (N) */
  450. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  451. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in,out] E */
  455. /* > \verbatim */
  456. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  457. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  458. /* > On exit, E has been destroyed. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in,out] Z */
  462. /* > \verbatim */
  463. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  464. /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */
  465. /* > matrix used in the reduction to tridiagonal form. */
  466. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  467. /* > orthonormal eigenvectors of the original symmetric matrix, */
  468. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  469. /* > of the symmetric tridiagonal matrix. */
  470. /* > If COMPZ = 'N', then Z is not referenced. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] LDZ */
  474. /* > \verbatim */
  475. /* > LDZ is INTEGER */
  476. /* > The leading dimension of the array Z. LDZ >= 1. */
  477. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] WORK */
  481. /* > \verbatim */
  482. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  483. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in] LWORK */
  487. /* > \verbatim */
  488. /* > LWORK is INTEGER */
  489. /* > The dimension of the array WORK. */
  490. /* > If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
  491. /* > If COMPZ = 'V' and N > 1 then LWORK must be at least */
  492. /* > ( 1 + 3*N + 2*N*lg N + 4*N**2 ), */
  493. /* > where lg( N ) = smallest integer k such */
  494. /* > that 2**k >= N. */
  495. /* > If COMPZ = 'I' and N > 1 then LWORK must be at least */
  496. /* > ( 1 + 4*N + N**2 ). */
  497. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  498. /* > equal to the minimum divide size, usually 25, then LWORK need */
  499. /* > only be f2cmax(1,2*(N-1)). */
  500. /* > */
  501. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  502. /* > only calculates the optimal size of the WORK array, returns */
  503. /* > this value as the first entry of the WORK array, and no error */
  504. /* > message related to LWORK is issued by XERBLA. */
  505. /* > \endverbatim */
  506. /* > */
  507. /* > \param[out] IWORK */
  508. /* > \verbatim */
  509. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  510. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  511. /* > \endverbatim */
  512. /* > */
  513. /* > \param[in] LIWORK */
  514. /* > \verbatim */
  515. /* > LIWORK is INTEGER */
  516. /* > The dimension of the array IWORK. */
  517. /* > If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
  518. /* > If COMPZ = 'V' and N > 1 then LIWORK must be at least */
  519. /* > ( 6 + 6*N + 5*N*lg N ). */
  520. /* > If COMPZ = 'I' and N > 1 then LIWORK must be at least */
  521. /* > ( 3 + 5*N ). */
  522. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  523. /* > equal to the minimum divide size, usually 25, then LIWORK */
  524. /* > need only be 1. */
  525. /* > */
  526. /* > If LIWORK = -1, then a workspace query is assumed; the */
  527. /* > routine only calculates the optimal size of the IWORK array, */
  528. /* > returns this value as the first entry of the IWORK array, and */
  529. /* > no error message related to LIWORK is issued by XERBLA. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[out] INFO */
  533. /* > \verbatim */
  534. /* > INFO is INTEGER */
  535. /* > = 0: successful exit. */
  536. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  537. /* > > 0: The algorithm failed to compute an eigenvalue while */
  538. /* > working on the submatrix lying in rows and columns */
  539. /* > INFO/(N+1) through mod(INFO,N+1). */
  540. /* > \endverbatim */
  541. /* Authors: */
  542. /* ======== */
  543. /* > \author Univ. of Tennessee */
  544. /* > \author Univ. of California Berkeley */
  545. /* > \author Univ. of Colorado Denver */
  546. /* > \author NAG Ltd. */
  547. /* > \date June 2017 */
  548. /* > \ingroup auxOTHERcomputational */
  549. /* > \par Contributors: */
  550. /* ================== */
  551. /* > */
  552. /* > Jeff Rutter, Computer Science Division, University of California */
  553. /* > at Berkeley, USA \n */
  554. /* > Modified by Francoise Tisseur, University of Tennessee */
  555. /* > */
  556. /* ===================================================================== */
  557. /* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__,
  558. doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
  559. integer *lwork, integer *iwork, integer *liwork, integer *info)
  560. {
  561. /* System generated locals */
  562. integer z_dim1, z_offset, i__1, i__2;
  563. doublereal d__1, d__2;
  564. /* Local variables */
  565. doublereal tiny;
  566. integer i__, j, k, m;
  567. doublereal p;
  568. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  569. integer *, doublereal *, doublereal *, integer *, doublereal *,
  570. integer *, doublereal *, doublereal *, integer *);
  571. extern logical lsame_(char *, char *);
  572. extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
  573. doublereal *, integer *);
  574. integer lwmin;
  575. extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *,
  576. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  577. integer *, doublereal *, integer *, integer *);
  578. integer start, ii;
  579. extern doublereal dlamch_(char *);
  580. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  581. doublereal *, doublereal *, integer *, integer *, doublereal *,
  582. integer *, integer *), dlacpy_(char *, integer *, integer
  583. *, doublereal *, integer *, doublereal *, integer *),
  584. dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
  585. doublereal *, integer *);
  586. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  587. integer *, integer *, ftnlen, ftnlen);
  588. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  589. integer finish;
  590. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  591. extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
  592. integer *), dlasrt_(char *, integer *, doublereal *, integer *);
  593. integer liwmin, icompz;
  594. extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
  595. doublereal *, doublereal *, integer *, doublereal *, integer *);
  596. doublereal orgnrm;
  597. logical lquery;
  598. integer smlsiz, storez, strtrw, lgn;
  599. doublereal eps;
  600. /* -- LAPACK computational routine (version 3.7.1) -- */
  601. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  602. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  603. /* June 2017 */
  604. /* ===================================================================== */
  605. /* Test the input parameters. */
  606. /* Parameter adjustments */
  607. --d__;
  608. --e;
  609. z_dim1 = *ldz;
  610. z_offset = 1 + z_dim1 * 1;
  611. z__ -= z_offset;
  612. --work;
  613. --iwork;
  614. /* Function Body */
  615. *info = 0;
  616. lquery = *lwork == -1 || *liwork == -1;
  617. if (lsame_(compz, "N")) {
  618. icompz = 0;
  619. } else if (lsame_(compz, "V")) {
  620. icompz = 1;
  621. } else if (lsame_(compz, "I")) {
  622. icompz = 2;
  623. } else {
  624. icompz = -1;
  625. }
  626. if (icompz < 0) {
  627. *info = -1;
  628. } else if (*n < 0) {
  629. *info = -2;
  630. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  631. *info = -6;
  632. }
  633. if (*info == 0) {
  634. /* Compute the workspace requirements */
  635. smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  636. ftnlen)6, (ftnlen)1);
  637. if (*n <= 1 || icompz == 0) {
  638. liwmin = 1;
  639. lwmin = 1;
  640. } else if (*n <= smlsiz) {
  641. liwmin = 1;
  642. lwmin = *n - 1 << 1;
  643. } else {
  644. lgn = (integer) (log((doublereal) (*n)) / log(2.));
  645. if (pow_ii(&c__2, &lgn) < *n) {
  646. ++lgn;
  647. }
  648. if (pow_ii(&c__2, &lgn) < *n) {
  649. ++lgn;
  650. }
  651. if (icompz == 1) {
  652. /* Computing 2nd power */
  653. i__1 = *n;
  654. lwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  655. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  656. } else if (icompz == 2) {
  657. /* Computing 2nd power */
  658. i__1 = *n;
  659. lwmin = (*n << 2) + 1 + i__1 * i__1;
  660. liwmin = *n * 5 + 3;
  661. }
  662. }
  663. work[1] = (doublereal) lwmin;
  664. iwork[1] = liwmin;
  665. if (*lwork < lwmin && ! lquery) {
  666. *info = -8;
  667. } else if (*liwork < liwmin && ! lquery) {
  668. *info = -10;
  669. }
  670. }
  671. if (*info != 0) {
  672. i__1 = -(*info);
  673. xerbla_("DSTEDC", &i__1, (ftnlen)6);
  674. return 0;
  675. } else if (lquery) {
  676. return 0;
  677. }
  678. /* Quick return if possible */
  679. if (*n == 0) {
  680. return 0;
  681. }
  682. if (*n == 1) {
  683. if (icompz != 0) {
  684. z__[z_dim1 + 1] = 1.;
  685. }
  686. return 0;
  687. }
  688. /* If the following conditional clause is removed, then the routine */
  689. /* will use the Divide and Conquer routine to compute only the */
  690. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  691. /* (2 + 5N + 2N lg(N)) integer workspace. */
  692. /* Since on many architectures DSTERF is much faster than any other */
  693. /* algorithm for finding eigenvalues only, it is used here */
  694. /* as the default. If the conditional clause is removed, then */
  695. /* information on the size of workspace needs to be changed. */
  696. /* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
  697. if (icompz == 0) {
  698. dsterf_(n, &d__[1], &e[1], info);
  699. goto L50;
  700. }
  701. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  702. /* solve the problem with another solver. */
  703. if (*n <= smlsiz) {
  704. dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
  705. } else {
  706. /* If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
  707. /* use. */
  708. if (icompz == 1) {
  709. storez = *n * *n + 1;
  710. } else {
  711. storez = 1;
  712. }
  713. if (icompz == 2) {
  714. dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
  715. }
  716. /* Scale. */
  717. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  718. if (orgnrm == 0.) {
  719. goto L50;
  720. }
  721. eps = dlamch_("Epsilon");
  722. start = 1;
  723. /* while ( START <= N ) */
  724. L10:
  725. if (start <= *n) {
  726. /* Let FINISH be the position of the next subdiagonal entry */
  727. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  728. /* subdiagonal exists. The matrix identified by the elements */
  729. /* between START and FINISH constitutes an independent */
  730. /* sub-problem. */
  731. finish = start;
  732. L20:
  733. if (finish < *n) {
  734. tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
  735. d__2 = d__[finish + 1], abs(d__2)));
  736. if ((d__1 = e[finish], abs(d__1)) > tiny) {
  737. ++finish;
  738. goto L20;
  739. }
  740. }
  741. /* (Sub) Problem determined. Compute its size and solve it. */
  742. m = finish - start + 1;
  743. if (m == 1) {
  744. start = finish + 1;
  745. goto L10;
  746. }
  747. if (m > smlsiz) {
  748. /* Scale. */
  749. orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
  750. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  751. start], &m, info);
  752. i__1 = m - 1;
  753. i__2 = m - 1;
  754. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  755. start], &i__2, info);
  756. if (icompz == 1) {
  757. strtrw = 1;
  758. } else {
  759. strtrw = start;
  760. }
  761. dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw +
  762. start * z_dim1], ldz, &work[1], n, &work[storez], &
  763. iwork[1], info);
  764. if (*info != 0) {
  765. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  766. (m + 1) + start - 1;
  767. goto L50;
  768. }
  769. /* Scale back. */
  770. dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  771. start], &m, info);
  772. } else {
  773. if (icompz == 1) {
  774. /* Since QR won't update a Z matrix which is larger than */
  775. /* the length of D, we must solve the sub-problem in a */
  776. /* workspace and then multiply back into Z. */
  777. dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
  778. work[m * m + 1], info);
  779. dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
  780. storez], n);
  781. dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
  782. work[1], &m, &c_b17, &z__[start * z_dim1 + 1],
  783. ldz);
  784. } else if (icompz == 2) {
  785. dsteqr_("I", &m, &d__[start], &e[start], &z__[start +
  786. start * z_dim1], ldz, &work[1], info);
  787. } else {
  788. dsterf_(&m, &d__[start], &e[start], info);
  789. }
  790. if (*info != 0) {
  791. *info = start * (*n + 1) + finish;
  792. goto L50;
  793. }
  794. }
  795. start = finish + 1;
  796. goto L10;
  797. }
  798. /* endwhile */
  799. if (icompz == 0) {
  800. /* Use Quick Sort */
  801. dlasrt_("I", n, &d__[1], info);
  802. } else {
  803. /* Use Selection Sort to minimize swaps of eigenvectors */
  804. i__1 = *n;
  805. for (ii = 2; ii <= i__1; ++ii) {
  806. i__ = ii - 1;
  807. k = i__;
  808. p = d__[i__];
  809. i__2 = *n;
  810. for (j = ii; j <= i__2; ++j) {
  811. if (d__[j] < p) {
  812. k = j;
  813. p = d__[j];
  814. }
  815. /* L30: */
  816. }
  817. if (k != i__) {
  818. d__[k] = d__[i__];
  819. d__[i__] = p;
  820. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1
  821. + 1], &c__1);
  822. }
  823. /* L40: */
  824. }
  825. }
  826. }
  827. L50:
  828. work[1] = (doublereal) lwmin;
  829. iwork[1] = liwmin;
  830. return 0;
  831. /* End of DSTEDC */
  832. } /* dstedc_ */