You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorm22.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublereal c_b10 = 1.;
  381. /* > \brief \b DORM22 multiplies a general matrix by a banded orthogonal matrix. */
  382. /* =========== DOCUMENTATION =========== */
  383. /* Online html documentation available at */
  384. /* http://www.netlib.org/lapack/explore-html/ */
  385. /* > \htmlonly */
  386. /* > Download DORM22 + dependencies */
  387. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorm22.
  388. f"> */
  389. /* > [TGZ]</a> */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorm22.
  391. f"> */
  392. /* > [ZIP]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorm22.
  394. f"> */
  395. /* > [TXT]</a> */
  396. /* > \endhtmlonly */
  397. /* Definition: */
  398. /* =========== */
  399. /* SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC, */
  400. /* $ WORK, LWORK, INFO ) */
  401. /* CHARACTER SIDE, TRANS */
  402. /* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO */
  403. /* DOUBLE PRECISION Q( LDQ, * ), C( LDC, * ), WORK( * ) */
  404. /* > \par Purpose */
  405. /* ============ */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > */
  410. /* > DORM22 overwrites the general real M-by-N matrix C with */
  411. /* > */
  412. /* > SIDE = 'L' SIDE = 'R' */
  413. /* > TRANS = 'N': Q * C C * Q */
  414. /* > TRANS = 'T': Q**T * C C * Q**T */
  415. /* > */
  416. /* > where Q is a real orthogonal matrix of order NQ, with NQ = M if */
  417. /* > SIDE = 'L' and NQ = N if SIDE = 'R'. */
  418. /* > The orthogonal matrix Q processes a 2-by-2 block structure */
  419. /* > */
  420. /* > [ Q11 Q12 ] */
  421. /* > Q = [ ] */
  422. /* > [ Q21 Q22 ], */
  423. /* > */
  424. /* > where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an */
  425. /* > N2-by-N2 upper triangular matrix. */
  426. /* > \endverbatim */
  427. /* Arguments: */
  428. /* ========== */
  429. /* > \param[in] SIDE */
  430. /* > \verbatim */
  431. /* > SIDE is CHARACTER*1 */
  432. /* > = 'L': apply Q or Q**T from the Left; */
  433. /* > = 'R': apply Q or Q**T from the Right. */
  434. /* > \endverbatim */
  435. /* > */
  436. /* > \param[in] TRANS */
  437. /* > \verbatim */
  438. /* > TRANS is CHARACTER*1 */
  439. /* > = 'N': apply Q (No transpose); */
  440. /* > = 'C': apply Q**T (Conjugate transpose). */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[in] M */
  444. /* > \verbatim */
  445. /* > M is INTEGER */
  446. /* > The number of rows of the matrix C. M >= 0. */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[in] N */
  450. /* > \verbatim */
  451. /* > N is INTEGER */
  452. /* > The number of columns of the matrix C. N >= 0. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] N1 */
  456. /* > \param[in] N2 */
  457. /* > \verbatim */
  458. /* > N1 is INTEGER */
  459. /* > N2 is INTEGER */
  460. /* > The dimension of Q12 and Q21, respectively. N1, N2 >= 0. */
  461. /* > The following requirement must be satisfied: */
  462. /* > N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'. */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in] Q */
  466. /* > \verbatim */
  467. /* > Q is DOUBLE PRECISION array, dimension */
  468. /* > (LDQ,M) if SIDE = 'L' */
  469. /* > (LDQ,N) if SIDE = 'R' */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[in] LDQ */
  473. /* > \verbatim */
  474. /* > LDQ is INTEGER */
  475. /* > The leading dimension of the array Q. */
  476. /* > LDQ >= f2cmax(1,M) if SIDE = 'L'; LDQ >= f2cmax(1,N) if SIDE = 'R'. */
  477. /* > \endverbatim */
  478. /* > */
  479. /* > \param[in,out] C */
  480. /* > \verbatim */
  481. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  482. /* > On entry, the M-by-N matrix C. */
  483. /* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in] LDC */
  487. /* > \verbatim */
  488. /* > LDC is INTEGER */
  489. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[out] WORK */
  493. /* > \verbatim */
  494. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  495. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  496. /* > \endverbatim */
  497. /* > */
  498. /* > \param[in] LWORK */
  499. /* > \verbatim */
  500. /* > LWORK is INTEGER */
  501. /* > The dimension of the array WORK. */
  502. /* > If SIDE = 'L', LWORK >= f2cmax(1,N); */
  503. /* > if SIDE = 'R', LWORK >= f2cmax(1,M). */
  504. /* > For optimum performance LWORK >= M*N. */
  505. /* > */
  506. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  507. /* > only calculates the optimal size of the WORK array, returns */
  508. /* > this value as the first entry of the WORK array, and no error */
  509. /* > message related to LWORK is issued by XERBLA. */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[out] INFO */
  513. /* > \verbatim */
  514. /* > INFO is INTEGER */
  515. /* > = 0: successful exit */
  516. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  517. /* > \endverbatim */
  518. /* Authors: */
  519. /* ======== */
  520. /* > \author Univ. of Tennessee */
  521. /* > \author Univ. of California Berkeley */
  522. /* > \author Univ. of Colorado Denver */
  523. /* > \author NAG Ltd. */
  524. /* > \date January 2015 */
  525. /* > \ingroup complexOTHERcomputational */
  526. /* ===================================================================== */
  527. /* Subroutine */ int dorm22_(char *side, char *trans, integer *m, integer *n,
  528. integer *n1, integer *n2, doublereal *q, integer *ldq, doublereal *
  529. c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
  530. {
  531. /* System generated locals */
  532. integer q_dim1, q_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4;
  533. /* Local variables */
  534. logical left;
  535. integer i__;
  536. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  537. integer *, doublereal *, doublereal *, integer *, doublereal *,
  538. integer *, doublereal *, doublereal *, integer *);
  539. extern logical lsame_(char *, char *);
  540. extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *,
  541. integer *, integer *, doublereal *, doublereal *, integer *,
  542. doublereal *, integer *);
  543. integer nb, nq, nw;
  544. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  545. doublereal *, integer *, doublereal *, integer *),
  546. xerbla_(char *, integer *, ftnlen);
  547. logical notran;
  548. integer ldwork, lwkopt;
  549. logical lquery;
  550. integer len;
  551. /* -- LAPACK computational routine (version 3.7.1) -- */
  552. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  553. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  554. /* January 2015 */
  555. /* ===================================================================== */
  556. /* Test the input arguments */
  557. /* Parameter adjustments */
  558. q_dim1 = *ldq;
  559. q_offset = 1 + q_dim1 * 1;
  560. q -= q_offset;
  561. c_dim1 = *ldc;
  562. c_offset = 1 + c_dim1 * 1;
  563. c__ -= c_offset;
  564. --work;
  565. /* Function Body */
  566. *info = 0;
  567. left = lsame_(side, "L");
  568. notran = lsame_(trans, "N");
  569. lquery = *lwork == -1;
  570. /* NQ is the order of Q; */
  571. /* NW is the minimum dimension of WORK. */
  572. if (left) {
  573. nq = *m;
  574. } else {
  575. nq = *n;
  576. }
  577. nw = nq;
  578. if (*n1 == 0 || *n2 == 0) {
  579. nw = 1;
  580. }
  581. if (! left && ! lsame_(side, "R")) {
  582. *info = -1;
  583. } else if (! lsame_(trans, "N") && ! lsame_(trans,
  584. "T")) {
  585. *info = -2;
  586. } else if (*m < 0) {
  587. *info = -3;
  588. } else if (*n < 0) {
  589. *info = -4;
  590. } else if (*n1 < 0 || *n1 + *n2 != nq) {
  591. *info = -5;
  592. } else if (*n2 < 0) {
  593. *info = -6;
  594. } else if (*ldq < f2cmax(1,nq)) {
  595. *info = -8;
  596. } else if (*ldc < f2cmax(1,*m)) {
  597. *info = -10;
  598. } else if (*lwork < nw && ! lquery) {
  599. *info = -12;
  600. }
  601. if (*info == 0) {
  602. lwkopt = *m * *n;
  603. work[1] = (doublereal) lwkopt;
  604. }
  605. if (*info != 0) {
  606. i__1 = -(*info);
  607. xerbla_("DORM22", &i__1, (ftnlen)6);
  608. return 0;
  609. } else if (lquery) {
  610. return 0;
  611. }
  612. /* Quick return if possible */
  613. if (*m == 0 || *n == 0) {
  614. work[1] = 1.;
  615. return 0;
  616. }
  617. /* Degenerate cases (N1 = 0 or N2 = 0) are handled using DTRMM. */
  618. if (*n1 == 0) {
  619. dtrmm_(side, "Upper", trans, "Non-Unit", m, n, &c_b10, &q[q_offset],
  620. ldq, &c__[c_offset], ldc);
  621. work[1] = 1.;
  622. return 0;
  623. } else if (*n2 == 0) {
  624. dtrmm_(side, "Lower", trans, "Non-Unit", m, n, &c_b10, &q[q_offset],
  625. ldq, &c__[c_offset], ldc);
  626. work[1] = 1.;
  627. return 0;
  628. }
  629. /* Compute the largest chunk size available from the workspace. */
  630. /* Computing MAX */
  631. i__1 = 1, i__2 = f2cmin(*lwork,lwkopt) / nq;
  632. nb = f2cmax(i__1,i__2);
  633. if (left) {
  634. if (notran) {
  635. i__1 = *n;
  636. i__2 = nb;
  637. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  638. /* Computing MIN */
  639. i__3 = nb, i__4 = *n - i__ + 1;
  640. len = f2cmin(i__3,i__4);
  641. ldwork = *m;
  642. /* Multiply bottom part of C by Q12. */
  643. dlacpy_("All", n1, &len, &c__[*n2 + 1 + i__ * c_dim1], ldc, &
  644. work[1], &ldwork);
  645. dtrmm_("Left", "Lower", "No Transpose", "Non-Unit", n1, &len,
  646. &c_b10, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
  647. ldwork);
  648. /* Multiply top part of C by Q11. */
  649. dgemm_("No Transpose", "No Transpose", n1, &len, n2, &c_b10, &
  650. q[q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b10,
  651. &work[1], &ldwork);
  652. /* Multiply top part of C by Q21. */
  653. dlacpy_("All", n2, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
  654. n1 + 1], &ldwork);
  655. dtrmm_("Left", "Upper", "No Transpose", "Non-Unit", n2, &len,
  656. &c_b10, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 + 1], &
  657. ldwork);
  658. /* Multiply bottom part of C by Q22. */
  659. dgemm_("No Transpose", "No Transpose", n2, &len, n1, &c_b10, &
  660. q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n2 + 1 +
  661. i__ * c_dim1], ldc, &c_b10, &work[*n1 + 1], &ldwork);
  662. /* Copy everything back. */
  663. dlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
  664. + 1], ldc);
  665. }
  666. } else {
  667. i__2 = *n;
  668. i__1 = nb;
  669. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  670. /* Computing MIN */
  671. i__3 = nb, i__4 = *n - i__ + 1;
  672. len = f2cmin(i__3,i__4);
  673. ldwork = *m;
  674. /* Multiply bottom part of C by Q21**T. */
  675. dlacpy_("All", n2, &len, &c__[*n1 + 1 + i__ * c_dim1], ldc, &
  676. work[1], &ldwork);
  677. dtrmm_("Left", "Upper", "Transpose", "Non-Unit", n2, &len, &
  678. c_b10, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
  679. /* Multiply top part of C by Q11**T. */
  680. dgemm_("Transpose", "No Transpose", n2, &len, n1, &c_b10, &q[
  681. q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b10, &
  682. work[1], &ldwork);
  683. /* Multiply top part of C by Q12**T. */
  684. dlacpy_("All", n1, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
  685. n2 + 1], &ldwork);
  686. dtrmm_("Left", "Lower", "Transpose", "Non-Unit", n1, &len, &
  687. c_b10, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 + 1]
  688. , &ldwork)
  689. ;
  690. /* Multiply bottom part of C by Q22**T. */
  691. dgemm_("Transpose", "No Transpose", n1, &len, n2, &c_b10, &q[*
  692. n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n1 + 1 + i__
  693. * c_dim1], ldc, &c_b10, &work[*n2 + 1], &ldwork);
  694. /* Copy everything back. */
  695. dlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
  696. + 1], ldc);
  697. }
  698. }
  699. } else {
  700. if (notran) {
  701. i__1 = *m;
  702. i__2 = nb;
  703. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  704. /* Computing MIN */
  705. i__3 = nb, i__4 = *m - i__ + 1;
  706. len = f2cmin(i__3,i__4);
  707. ldwork = len;
  708. /* Multiply right part of C by Q21. */
  709. dlacpy_("All", &len, n2, &c__[i__ + (*n1 + 1) * c_dim1], ldc,
  710. &work[1], &ldwork);
  711. dtrmm_("Right", "Upper", "No Transpose", "Non-Unit", &len, n2,
  712. &c_b10, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
  713. /* Multiply left part of C by Q11. */
  714. dgemm_("No Transpose", "No Transpose", &len, n2, n1, &c_b10, &
  715. c__[i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b10, &
  716. work[1], &ldwork);
  717. /* Multiply left part of C by Q12. */
  718. dlacpy_("All", &len, n1, &c__[i__ + c_dim1], ldc, &work[*n2 *
  719. ldwork + 1], &ldwork);
  720. dtrmm_("Right", "Lower", "No Transpose", "Non-Unit", &len, n1,
  721. &c_b10, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 *
  722. ldwork + 1], &ldwork);
  723. /* Multiply right part of C by Q22. */
  724. dgemm_("No Transpose", "No Transpose", &len, n1, n2, &c_b10, &
  725. c__[i__ + (*n1 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2
  726. + 1) * q_dim1], ldq, &c_b10, &work[*n2 * ldwork + 1],
  727. &ldwork);
  728. /* Copy everything back. */
  729. dlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
  730. ldc);
  731. }
  732. } else {
  733. i__2 = *m;
  734. i__1 = nb;
  735. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  736. /* Computing MIN */
  737. i__3 = nb, i__4 = *m - i__ + 1;
  738. len = f2cmin(i__3,i__4);
  739. ldwork = len;
  740. /* Multiply right part of C by Q12**T. */
  741. dlacpy_("All", &len, n1, &c__[i__ + (*n2 + 1) * c_dim1], ldc,
  742. &work[1], &ldwork);
  743. dtrmm_("Right", "Lower", "Transpose", "Non-Unit", &len, n1, &
  744. c_b10, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
  745. ldwork);
  746. /* Multiply left part of C by Q11**T. */
  747. dgemm_("No Transpose", "Transpose", &len, n1, n2, &c_b10, &
  748. c__[i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b10, &
  749. work[1], &ldwork);
  750. /* Multiply left part of C by Q21**T. */
  751. dlacpy_("All", &len, n2, &c__[i__ + c_dim1], ldc, &work[*n1 *
  752. ldwork + 1], &ldwork);
  753. dtrmm_("Right", "Upper", "Transpose", "Non-Unit", &len, n2, &
  754. c_b10, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 * ldwork
  755. + 1], &ldwork);
  756. /* Multiply right part of C by Q22**T. */
  757. dgemm_("No Transpose", "Transpose", &len, n2, n1, &c_b10, &
  758. c__[i__ + (*n2 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2
  759. + 1) * q_dim1], ldq, &c_b10, &work[*n1 * ldwork + 1],
  760. &ldwork);
  761. /* Copy everything back. */
  762. dlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
  763. ldc);
  764. }
  765. }
  766. }
  767. work[1] = (doublereal) lwkopt;
  768. return 0;
  769. /* End of DORM22 */
  770. } /* dorm22_ */