You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasy2.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__4 = 4;
  381. static integer c__1 = 1;
  382. static integer c__16 = 16;
  383. static integer c__0 = 0;
  384. /* > \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download DLASY2 + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.
  391. f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.
  394. f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.
  397. f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, */
  403. /* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) */
  404. /* LOGICAL LTRANL, LTRANR */
  405. /* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 */
  406. /* DOUBLE PRECISION SCALE, XNORM */
  407. /* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), */
  408. /* $ X( LDX, * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */
  415. /* > */
  416. /* > op(TL)*X + ISGN*X*op(TR) = SCALE*B, */
  417. /* > */
  418. /* > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
  419. /* > -1. op(T) = T or T**T, where T**T denotes the transpose of T. */
  420. /* > \endverbatim */
  421. /* Arguments: */
  422. /* ========== */
  423. /* > \param[in] LTRANL */
  424. /* > \verbatim */
  425. /* > LTRANL is LOGICAL */
  426. /* > On entry, LTRANL specifies the op(TL): */
  427. /* > = .FALSE., op(TL) = TL, */
  428. /* > = .TRUE., op(TL) = TL**T. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in] LTRANR */
  432. /* > \verbatim */
  433. /* > LTRANR is LOGICAL */
  434. /* > On entry, LTRANR specifies the op(TR): */
  435. /* > = .FALSE., op(TR) = TR, */
  436. /* > = .TRUE., op(TR) = TR**T. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] ISGN */
  440. /* > \verbatim */
  441. /* > ISGN is INTEGER */
  442. /* > On entry, ISGN specifies the sign of the equation */
  443. /* > as described before. ISGN may only be 1 or -1. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] N1 */
  447. /* > \verbatim */
  448. /* > N1 is INTEGER */
  449. /* > On entry, N1 specifies the order of matrix TL. */
  450. /* > N1 may only be 0, 1 or 2. */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in] N2 */
  454. /* > \verbatim */
  455. /* > N2 is INTEGER */
  456. /* > On entry, N2 specifies the order of matrix TR. */
  457. /* > N2 may only be 0, 1 or 2. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[in] TL */
  461. /* > \verbatim */
  462. /* > TL is DOUBLE PRECISION array, dimension (LDTL,2) */
  463. /* > On entry, TL contains an N1 by N1 matrix. */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[in] LDTL */
  467. /* > \verbatim */
  468. /* > LDTL is INTEGER */
  469. /* > The leading dimension of the matrix TL. LDTL >= f2cmax(1,N1). */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[in] TR */
  473. /* > \verbatim */
  474. /* > TR is DOUBLE PRECISION array, dimension (LDTR,2) */
  475. /* > On entry, TR contains an N2 by N2 matrix. */
  476. /* > \endverbatim */
  477. /* > */
  478. /* > \param[in] LDTR */
  479. /* > \verbatim */
  480. /* > LDTR is INTEGER */
  481. /* > The leading dimension of the matrix TR. LDTR >= f2cmax(1,N2). */
  482. /* > \endverbatim */
  483. /* > */
  484. /* > \param[in] B */
  485. /* > \verbatim */
  486. /* > B is DOUBLE PRECISION array, dimension (LDB,2) */
  487. /* > On entry, the N1 by N2 matrix B contains the right-hand */
  488. /* > side of the equation. */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[in] LDB */
  492. /* > \verbatim */
  493. /* > LDB is INTEGER */
  494. /* > The leading dimension of the matrix B. LDB >= f2cmax(1,N1). */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[out] SCALE */
  498. /* > \verbatim */
  499. /* > SCALE is DOUBLE PRECISION */
  500. /* > On exit, SCALE contains the scale factor. SCALE is chosen */
  501. /* > less than or equal to 1 to prevent the solution overflowing. */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[out] X */
  505. /* > \verbatim */
  506. /* > X is DOUBLE PRECISION array, dimension (LDX,2) */
  507. /* > On exit, X contains the N1 by N2 solution. */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[in] LDX */
  511. /* > \verbatim */
  512. /* > LDX is INTEGER */
  513. /* > The leading dimension of the matrix X. LDX >= f2cmax(1,N1). */
  514. /* > \endverbatim */
  515. /* > */
  516. /* > \param[out] XNORM */
  517. /* > \verbatim */
  518. /* > XNORM is DOUBLE PRECISION */
  519. /* > On exit, XNORM is the infinity-norm of the solution. */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \param[out] INFO */
  523. /* > \verbatim */
  524. /* > INFO is INTEGER */
  525. /* > On exit, INFO is set to */
  526. /* > 0: successful exit. */
  527. /* > 1: TL and TR have too close eigenvalues, so TL or */
  528. /* > TR is perturbed to get a nonsingular equation. */
  529. /* > NOTE: In the interests of speed, this routine does not */
  530. /* > check the inputs for errors. */
  531. /* > \endverbatim */
  532. /* Authors: */
  533. /* ======== */
  534. /* > \author Univ. of Tennessee */
  535. /* > \author Univ. of California Berkeley */
  536. /* > \author Univ. of Colorado Denver */
  537. /* > \author NAG Ltd. */
  538. /* > \date June 2016 */
  539. /* > \ingroup doubleSYauxiliary */
  540. /* ===================================================================== */
  541. /* Subroutine */ int dlasy2_(logical *ltranl, logical *ltranr, integer *isgn,
  542. integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *
  543. tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale,
  544. doublereal *x, integer *ldx, doublereal *xnorm, integer *info)
  545. {
  546. /* Initialized data */
  547. static integer locu12[4] = { 3,4,1,2 };
  548. static integer locl21[4] = { 2,1,4,3 };
  549. static integer locu22[4] = { 4,3,2,1 };
  550. static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
  551. static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
  552. /* System generated locals */
  553. integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1,
  554. x_offset;
  555. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
  556. /* Local variables */
  557. doublereal btmp[4], smin;
  558. integer ipiv;
  559. doublereal temp;
  560. integer jpiv[4];
  561. doublereal xmax;
  562. integer ipsv, jpsv, i__, j, k;
  563. logical bswap;
  564. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  565. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  566. *, doublereal *, integer *);
  567. logical xswap;
  568. doublereal x2[2], l21, u11, u12;
  569. integer ip, jp;
  570. doublereal u22, t16[16] /* was [4][4] */;
  571. extern doublereal dlamch_(char *);
  572. extern integer idamax_(integer *, doublereal *, integer *);
  573. doublereal smlnum, gam, bet, eps, sgn, tmp[4], tau1;
  574. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  575. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  576. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  577. /* June 2016 */
  578. /* ===================================================================== */
  579. /* Parameter adjustments */
  580. tl_dim1 = *ldtl;
  581. tl_offset = 1 + tl_dim1 * 1;
  582. tl -= tl_offset;
  583. tr_dim1 = *ldtr;
  584. tr_offset = 1 + tr_dim1 * 1;
  585. tr -= tr_offset;
  586. b_dim1 = *ldb;
  587. b_offset = 1 + b_dim1 * 1;
  588. b -= b_offset;
  589. x_dim1 = *ldx;
  590. x_offset = 1 + x_dim1 * 1;
  591. x -= x_offset;
  592. /* Function Body */
  593. /* Do not check the input parameters for errors */
  594. *info = 0;
  595. /* Quick return if possible */
  596. if (*n1 == 0 || *n2 == 0) {
  597. return 0;
  598. }
  599. /* Set constants to control overflow */
  600. eps = dlamch_("P");
  601. smlnum = dlamch_("S") / eps;
  602. sgn = (doublereal) (*isgn);
  603. k = *n1 + *n1 + *n2 - 2;
  604. switch (k) {
  605. case 1: goto L10;
  606. case 2: goto L20;
  607. case 3: goto L30;
  608. case 4: goto L50;
  609. }
  610. /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */
  611. L10:
  612. tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  613. bet = abs(tau1);
  614. if (bet <= smlnum) {
  615. tau1 = smlnum;
  616. bet = smlnum;
  617. *info = 1;
  618. }
  619. *scale = 1.;
  620. gam = (d__1 = b[b_dim1 + 1], abs(d__1));
  621. if (smlnum * gam > bet) {
  622. *scale = 1. / gam;
  623. }
  624. x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
  625. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
  626. return 0;
  627. /* 1 by 2: */
  628. /* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] */
  629. /* [TR21 TR22] */
  630. L20:
  631. /* Computing MAX */
  632. /* Computing MAX */
  633. d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
  634. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
  635. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tr[
  636. tr_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  637. tr[(tr_dim1 << 1) + 2], abs(d__5));
  638. d__6 = eps * f2cmax(d__7,d__8);
  639. smin = f2cmax(d__6,smlnum);
  640. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  641. tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  642. if (*ltranr) {
  643. tmp[1] = sgn * tr[tr_dim1 + 2];
  644. tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
  645. } else {
  646. tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
  647. tmp[2] = sgn * tr[tr_dim1 + 2];
  648. }
  649. btmp[0] = b[b_dim1 + 1];
  650. btmp[1] = b[(b_dim1 << 1) + 1];
  651. goto L40;
  652. /* 2 by 1: */
  653. /* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] */
  654. /* [TL21 TL22] [X21] [X21] [B21] */
  655. L30:
  656. /* Computing MAX */
  657. /* Computing MAX */
  658. d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
  659. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
  660. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tl[
  661. tl_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  662. tl[(tl_dim1 << 1) + 2], abs(d__5));
  663. d__6 = eps * f2cmax(d__7,d__8);
  664. smin = f2cmax(d__6,smlnum);
  665. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  666. tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  667. if (*ltranl) {
  668. tmp[1] = tl[(tl_dim1 << 1) + 1];
  669. tmp[2] = tl[tl_dim1 + 2];
  670. } else {
  671. tmp[1] = tl[tl_dim1 + 2];
  672. tmp[2] = tl[(tl_dim1 << 1) + 1];
  673. }
  674. btmp[0] = b[b_dim1 + 1];
  675. btmp[1] = b[b_dim1 + 2];
  676. L40:
  677. /* Solve 2 by 2 system using complete pivoting. */
  678. /* Set pivots less than SMIN to SMIN. */
  679. ipiv = idamax_(&c__4, tmp, &c__1);
  680. u11 = tmp[ipiv - 1];
  681. if (abs(u11) <= smin) {
  682. *info = 1;
  683. u11 = smin;
  684. }
  685. u12 = tmp[locu12[ipiv - 1] - 1];
  686. l21 = tmp[locl21[ipiv - 1] - 1] / u11;
  687. u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
  688. xswap = xswpiv[ipiv - 1];
  689. bswap = bswpiv[ipiv - 1];
  690. if (abs(u22) <= smin) {
  691. *info = 1;
  692. u22 = smin;
  693. }
  694. if (bswap) {
  695. temp = btmp[1];
  696. btmp[1] = btmp[0] - l21 * temp;
  697. btmp[0] = temp;
  698. } else {
  699. btmp[1] -= l21 * btmp[0];
  700. }
  701. *scale = 1.;
  702. if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) >
  703. abs(u11)) {
  704. /* Computing MAX */
  705. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);
  706. *scale = .5 / f2cmax(d__1,d__2);
  707. btmp[0] *= *scale;
  708. btmp[1] *= *scale;
  709. }
  710. x2[1] = btmp[1] / u22;
  711. x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
  712. if (xswap) {
  713. temp = x2[1];
  714. x2[1] = x2[0];
  715. x2[0] = temp;
  716. }
  717. x[x_dim1 + 1] = x2[0];
  718. if (*n1 == 1) {
  719. x[(x_dim1 << 1) + 1] = x2[1];
  720. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1)
  721. + 1], abs(d__2));
  722. } else {
  723. x[x_dim1 + 2] = x2[1];
  724. /* Computing MAX */
  725. d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
  726. , abs(d__2));
  727. *xnorm = f2cmax(d__3,d__4);
  728. }
  729. return 0;
  730. /* 2 by 2: */
  731. /* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
  732. /* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] */
  733. /* Solve equivalent 4 by 4 system using complete pivoting. */
  734. /* Set pivots less than SMIN to SMIN. */
  735. L50:
  736. /* Computing MAX */
  737. d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 <<
  738. 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tr[
  739. tr_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 =
  740. tr[(tr_dim1 << 1) + 2], abs(d__4));
  741. smin = f2cmax(d__5,d__6);
  742. /* Computing MAX */
  743. d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = f2cmax(d__5,
  744. d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 =
  745. f2cmax(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =
  746. f2cmax(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))
  747. ;
  748. smin = f2cmax(d__5,d__6);
  749. /* Computing MAX */
  750. d__1 = eps * smin;
  751. smin = f2cmax(d__1,smlnum);
  752. btmp[0] = 0.;
  753. dcopy_(&c__16, btmp, &c__0, t16, &c__1);
  754. t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  755. t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  756. t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  757. t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
  758. if (*ltranl) {
  759. t16[4] = tl[tl_dim1 + 2];
  760. t16[1] = tl[(tl_dim1 << 1) + 1];
  761. t16[14] = tl[tl_dim1 + 2];
  762. t16[11] = tl[(tl_dim1 << 1) + 1];
  763. } else {
  764. t16[4] = tl[(tl_dim1 << 1) + 1];
  765. t16[1] = tl[tl_dim1 + 2];
  766. t16[14] = tl[(tl_dim1 << 1) + 1];
  767. t16[11] = tl[tl_dim1 + 2];
  768. }
  769. if (*ltranr) {
  770. t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
  771. t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
  772. t16[2] = sgn * tr[tr_dim1 + 2];
  773. t16[7] = sgn * tr[tr_dim1 + 2];
  774. } else {
  775. t16[8] = sgn * tr[tr_dim1 + 2];
  776. t16[13] = sgn * tr[tr_dim1 + 2];
  777. t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
  778. t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
  779. }
  780. btmp[0] = b[b_dim1 + 1];
  781. btmp[1] = b[b_dim1 + 2];
  782. btmp[2] = b[(b_dim1 << 1) + 1];
  783. btmp[3] = b[(b_dim1 << 1) + 2];
  784. /* Perform elimination */
  785. for (i__ = 1; i__ <= 3; ++i__) {
  786. xmax = 0.;
  787. for (ip = i__; ip <= 4; ++ip) {
  788. for (jp = i__; jp <= 4; ++jp) {
  789. if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {
  790. xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));
  791. ipsv = ip;
  792. jpsv = jp;
  793. }
  794. /* L60: */
  795. }
  796. /* L70: */
  797. }
  798. if (ipsv != i__) {
  799. dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
  800. temp = btmp[i__ - 1];
  801. btmp[i__ - 1] = btmp[ipsv - 1];
  802. btmp[ipsv - 1] = temp;
  803. }
  804. if (jpsv != i__) {
  805. dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4],
  806. &c__1);
  807. }
  808. jpiv[i__ - 1] = jpsv;
  809. if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {
  810. *info = 1;
  811. t16[i__ + (i__ << 2) - 5] = smin;
  812. }
  813. for (j = i__ + 1; j <= 4; ++j) {
  814. t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
  815. btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
  816. for (k = i__ + 1; k <= 4; ++k) {
  817. t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
  818. k << 2) - 5];
  819. /* L80: */
  820. }
  821. /* L90: */
  822. }
  823. /* L100: */
  824. }
  825. if (abs(t16[15]) < smin) {
  826. *info = 1;
  827. t16[15] = smin;
  828. }
  829. *scale = 1.;
  830. if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])
  831. > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) ||
  832. smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {
  833. /* Computing MAX */
  834. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = f2cmax(d__1,d__2), d__2
  835. = abs(btmp[2]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[3]);
  836. *scale = .125 / f2cmax(d__1,d__2);
  837. btmp[0] *= *scale;
  838. btmp[1] *= *scale;
  839. btmp[2] *= *scale;
  840. btmp[3] *= *scale;
  841. }
  842. for (i__ = 1; i__ <= 4; ++i__) {
  843. k = 5 - i__;
  844. temp = 1. / t16[k + (k << 2) - 5];
  845. tmp[k - 1] = btmp[k - 1] * temp;
  846. for (j = k + 1; j <= 4; ++j) {
  847. tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
  848. /* L110: */
  849. }
  850. /* L120: */
  851. }
  852. for (i__ = 1; i__ <= 3; ++i__) {
  853. if (jpiv[4 - i__ - 1] != 4 - i__) {
  854. temp = tmp[4 - i__ - 1];
  855. tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
  856. tmp[jpiv[4 - i__ - 1] - 1] = temp;
  857. }
  858. /* L130: */
  859. }
  860. x[x_dim1 + 1] = tmp[0];
  861. x[x_dim1 + 2] = tmp[1];
  862. x[(x_dim1 << 1) + 1] = tmp[2];
  863. x[(x_dim1 << 1) + 2] = tmp[3];
  864. /* Computing MAX */
  865. d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);
  866. *xnorm = f2cmax(d__1,d__2);
  867. return 0;
  868. /* End of DLASY2 */
  869. } /* dlasy2_ */