You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd6.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__0 = 0;
  381. static doublereal c_b7 = 1.;
  382. static integer c__1 = 1;
  383. static integer c_n1 = -1;
  384. /* > \brief \b DLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller o
  385. nes by appending a row. Used by sbdsdc. */
  386. /* =========== DOCUMENTATION =========== */
  387. /* Online html documentation available at */
  388. /* http://www.netlib.org/lapack/explore-html/ */
  389. /* > \htmlonly */
  390. /* > Download DLASD6 + dependencies */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd6.
  392. f"> */
  393. /* > [TGZ]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd6.
  395. f"> */
  396. /* > [ZIP]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd6.
  398. f"> */
  399. /* > [TXT]</a> */
  400. /* > \endhtmlonly */
  401. /* Definition: */
  402. /* =========== */
  403. /* SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA, */
  404. /* IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, */
  405. /* LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, */
  406. /* IWORK, INFO ) */
  407. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
  408. /* $ NR, SQRE */
  409. /* DOUBLE PRECISION ALPHA, BETA, C, S */
  410. /* INTEGER GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ), */
  411. /* $ PERM( * ) */
  412. /* DOUBLE PRECISION D( * ), DIFL( * ), DIFR( * ), */
  413. /* $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
  414. /* $ VF( * ), VL( * ), WORK( * ), Z( * ) */
  415. /* > \par Purpose: */
  416. /* ============= */
  417. /* > */
  418. /* > \verbatim */
  419. /* > */
  420. /* > DLASD6 computes the SVD of an updated upper bidiagonal matrix B */
  421. /* > obtained by merging two smaller ones by appending a row. This */
  422. /* > routine is used only for the problem which requires all singular */
  423. /* > values and optionally singular vector matrices in factored form. */
  424. /* > B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
  425. /* > A related subroutine, DLASD1, handles the case in which all singular */
  426. /* > values and singular vectors of the bidiagonal matrix are desired. */
  427. /* > */
  428. /* > DLASD6 computes the SVD as follows: */
  429. /* > */
  430. /* > ( D1(in) 0 0 0 ) */
  431. /* > B = U(in) * ( Z1**T a Z2**T b ) * VT(in) */
  432. /* > ( 0 0 D2(in) 0 ) */
  433. /* > */
  434. /* > = U(out) * ( D(out) 0) * VT(out) */
  435. /* > */
  436. /* > where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M */
  437. /* > with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
  438. /* > elsewhere; and the entry b is empty if SQRE = 0. */
  439. /* > */
  440. /* > The singular values of B can be computed using D1, D2, the first */
  441. /* > components of all the right singular vectors of the lower block, and */
  442. /* > the last components of all the right singular vectors of the upper */
  443. /* > block. These components are stored and updated in VF and VL, */
  444. /* > respectively, in DLASD6. Hence U and VT are not explicitly */
  445. /* > referenced. */
  446. /* > */
  447. /* > The singular values are stored in D. The algorithm consists of two */
  448. /* > stages: */
  449. /* > */
  450. /* > The first stage consists of deflating the size of the problem */
  451. /* > when there are multiple singular values or if there is a zero */
  452. /* > in the Z vector. For each such occurrence the dimension of the */
  453. /* > secular equation problem is reduced by one. This stage is */
  454. /* > performed by the routine DLASD7. */
  455. /* > */
  456. /* > The second stage consists of calculating the updated */
  457. /* > singular values. This is done by finding the roots of the */
  458. /* > secular equation via the routine DLASD4 (as called by DLASD8). */
  459. /* > This routine also updates VF and VL and computes the distances */
  460. /* > between the updated singular values and the old singular */
  461. /* > values. */
  462. /* > */
  463. /* > DLASD6 is called from DLASDA. */
  464. /* > \endverbatim */
  465. /* Arguments: */
  466. /* ========== */
  467. /* > \param[in] ICOMPQ */
  468. /* > \verbatim */
  469. /* > ICOMPQ is INTEGER */
  470. /* > Specifies whether singular vectors are to be computed in */
  471. /* > factored form: */
  472. /* > = 0: Compute singular values only. */
  473. /* > = 1: Compute singular vectors in factored form as well. */
  474. /* > \endverbatim */
  475. /* > */
  476. /* > \param[in] NL */
  477. /* > \verbatim */
  478. /* > NL is INTEGER */
  479. /* > The row dimension of the upper block. NL >= 1. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] NR */
  483. /* > \verbatim */
  484. /* > NR is INTEGER */
  485. /* > The row dimension of the lower block. NR >= 1. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in] SQRE */
  489. /* > \verbatim */
  490. /* > SQRE is INTEGER */
  491. /* > = 0: the lower block is an NR-by-NR square matrix. */
  492. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  493. /* > */
  494. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  495. /* > and column dimension M = N + SQRE. */
  496. /* > \endverbatim */
  497. /* > */
  498. /* > \param[in,out] D */
  499. /* > \verbatim */
  500. /* > D is DOUBLE PRECISION array, dimension ( NL+NR+1 ). */
  501. /* > On entry D(1:NL,1:NL) contains the singular values of the */
  502. /* > upper block, and D(NL+2:N) contains the singular values */
  503. /* > of the lower block. On exit D(1:N) contains the singular */
  504. /* > values of the modified matrix. */
  505. /* > \endverbatim */
  506. /* > */
  507. /* > \param[in,out] VF */
  508. /* > \verbatim */
  509. /* > VF is DOUBLE PRECISION array, dimension ( M ) */
  510. /* > On entry, VF(1:NL+1) contains the first components of all */
  511. /* > right singular vectors of the upper block; and VF(NL+2:M) */
  512. /* > contains the first components of all right singular vectors */
  513. /* > of the lower block. On exit, VF contains the first components */
  514. /* > of all right singular vectors of the bidiagonal matrix. */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \param[in,out] VL */
  518. /* > \verbatim */
  519. /* > VL is DOUBLE PRECISION array, dimension ( M ) */
  520. /* > On entry, VL(1:NL+1) contains the last components of all */
  521. /* > right singular vectors of the upper block; and VL(NL+2:M) */
  522. /* > contains the last components of all right singular vectors of */
  523. /* > the lower block. On exit, VL contains the last components of */
  524. /* > all right singular vectors of the bidiagonal matrix. */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[in,out] ALPHA */
  528. /* > \verbatim */
  529. /* > ALPHA is DOUBLE PRECISION */
  530. /* > Contains the diagonal element associated with the added row. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in,out] BETA */
  534. /* > \verbatim */
  535. /* > BETA is DOUBLE PRECISION */
  536. /* > Contains the off-diagonal element associated with the added */
  537. /* > row. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in,out] IDXQ */
  541. /* > \verbatim */
  542. /* > IDXQ is INTEGER array, dimension ( N ) */
  543. /* > This contains the permutation which will reintegrate the */
  544. /* > subproblem just solved back into sorted order, i.e. */
  545. /* > D( IDXQ( I = 1, N ) ) will be in ascending order. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[out] PERM */
  549. /* > \verbatim */
  550. /* > PERM is INTEGER array, dimension ( N ) */
  551. /* > The permutations (from deflation and sorting) to be applied */
  552. /* > to each block. Not referenced if ICOMPQ = 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[out] GIVPTR */
  556. /* > \verbatim */
  557. /* > GIVPTR is INTEGER */
  558. /* > The number of Givens rotations which took place in this */
  559. /* > subproblem. Not referenced if ICOMPQ = 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[out] GIVCOL */
  563. /* > \verbatim */
  564. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  565. /* > Each pair of numbers indicates a pair of columns to take place */
  566. /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDGCOL */
  570. /* > \verbatim */
  571. /* > LDGCOL is INTEGER */
  572. /* > leading dimension of GIVCOL, must be at least N. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] GIVNUM */
  576. /* > \verbatim */
  577. /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  578. /* > Each number indicates the C or S value to be used in the */
  579. /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDGNUM */
  583. /* > \verbatim */
  584. /* > LDGNUM is INTEGER */
  585. /* > The leading dimension of GIVNUM and POLES, must be at least N. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] POLES */
  589. /* > \verbatim */
  590. /* > POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  591. /* > On exit, POLES(1,*) is an array containing the new singular */
  592. /* > values obtained from solving the secular equation, and */
  593. /* > POLES(2,*) is an array containing the poles in the secular */
  594. /* > equation. Not referenced if ICOMPQ = 0. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] DIFL */
  598. /* > \verbatim */
  599. /* > DIFL is DOUBLE PRECISION array, dimension ( N ) */
  600. /* > On exit, DIFL(I) is the distance between I-th updated */
  601. /* > (undeflated) singular value and the I-th (undeflated) old */
  602. /* > singular value. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] DIFR */
  606. /* > \verbatim */
  607. /* > DIFR is DOUBLE PRECISION array, */
  608. /* > dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
  609. /* > dimension ( K ) if ICOMPQ = 0. */
  610. /* > On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
  611. /* > defined and will not be referenced. */
  612. /* > */
  613. /* > If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
  614. /* > normalizing factors for the right singular vector matrix. */
  615. /* > */
  616. /* > See DLASD8 for details on DIFL and DIFR. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] Z */
  620. /* > \verbatim */
  621. /* > Z is DOUBLE PRECISION array, dimension ( M ) */
  622. /* > The first elements of this array contain the components */
  623. /* > of the deflation-adjusted updating row vector. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] K */
  627. /* > \verbatim */
  628. /* > K is INTEGER */
  629. /* > Contains the dimension of the non-deflated matrix, */
  630. /* > This is the order of the related secular equation. 1 <= K <=N. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] C */
  634. /* > \verbatim */
  635. /* > C is DOUBLE PRECISION */
  636. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  637. /* > rotation related to the right null space if SQRE = 1. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] S */
  641. /* > \verbatim */
  642. /* > S is DOUBLE PRECISION */
  643. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  644. /* > rotation related to the right null space if SQRE = 1. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is DOUBLE PRECISION array, dimension ( 4 * M ) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] IWORK */
  653. /* > \verbatim */
  654. /* > IWORK is INTEGER array, dimension ( 3 * N ) */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] INFO */
  658. /* > \verbatim */
  659. /* > INFO is INTEGER */
  660. /* > = 0: successful exit. */
  661. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  662. /* > > 0: if INFO = 1, a singular value did not converge */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date June 2016 */
  671. /* > \ingroup OTHERauxiliary */
  672. /* > \par Contributors: */
  673. /* ================== */
  674. /* > */
  675. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  676. /* > California at Berkeley, USA */
  677. /* > */
  678. /* ===================================================================== */
  679. /* Subroutine */ int dlasd6_(integer *icompq, integer *nl, integer *nr,
  680. integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl,
  681. doublereal *alpha, doublereal *beta, integer *idxq, integer *perm,
  682. integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
  683. integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *
  684. difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s,
  685. doublereal *work, integer *iwork, integer *info)
  686. {
  687. /* System generated locals */
  688. integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset,
  689. poles_dim1, poles_offset, i__1;
  690. doublereal d__1, d__2;
  691. /* Local variables */
  692. integer idxc, idxp, ivfw, ivlw, i__, m, n;
  693. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  694. doublereal *, integer *);
  695. integer n1, n2;
  696. extern /* Subroutine */ int dlasd7_(integer *, integer *, integer *,
  697. integer *, integer *, doublereal *, doublereal *, doublereal *,
  698. doublereal *, doublereal *, doublereal *, doublereal *,
  699. doublereal *, doublereal *, doublereal *, integer *, integer *,
  700. integer *, integer *, integer *, integer *, integer *, doublereal
  701. *, integer *, doublereal *, doublereal *, integer *), dlasd8_(
  702. integer *, integer *, doublereal *, doublereal *, doublereal *,
  703. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  704. doublereal *, integer *);
  705. integer iw;
  706. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  707. doublereal *, doublereal *, integer *, integer *, doublereal *,
  708. integer *, integer *), dlamrg_(integer *, integer *,
  709. doublereal *, integer *, integer *, integer *);
  710. integer isigma;
  711. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  712. doublereal orgnrm;
  713. integer idx;
  714. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  715. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  716. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  717. /* June 2016 */
  718. /* ===================================================================== */
  719. /* Test the input parameters. */
  720. /* Parameter adjustments */
  721. --d__;
  722. --vf;
  723. --vl;
  724. --idxq;
  725. --perm;
  726. givcol_dim1 = *ldgcol;
  727. givcol_offset = 1 + givcol_dim1 * 1;
  728. givcol -= givcol_offset;
  729. poles_dim1 = *ldgnum;
  730. poles_offset = 1 + poles_dim1 * 1;
  731. poles -= poles_offset;
  732. givnum_dim1 = *ldgnum;
  733. givnum_offset = 1 + givnum_dim1 * 1;
  734. givnum -= givnum_offset;
  735. --difl;
  736. --difr;
  737. --z__;
  738. --work;
  739. --iwork;
  740. /* Function Body */
  741. *info = 0;
  742. n = *nl + *nr + 1;
  743. m = n + *sqre;
  744. if (*icompq < 0 || *icompq > 1) {
  745. *info = -1;
  746. } else if (*nl < 1) {
  747. *info = -2;
  748. } else if (*nr < 1) {
  749. *info = -3;
  750. } else if (*sqre < 0 || *sqre > 1) {
  751. *info = -4;
  752. } else if (*ldgcol < n) {
  753. *info = -14;
  754. } else if (*ldgnum < n) {
  755. *info = -16;
  756. }
  757. if (*info != 0) {
  758. i__1 = -(*info);
  759. xerbla_("DLASD6", &i__1, (ftnlen)6);
  760. return 0;
  761. }
  762. /* The following values are for bookkeeping purposes only. They are */
  763. /* integer pointers which indicate the portion of the workspace */
  764. /* used by a particular array in DLASD7 and DLASD8. */
  765. isigma = 1;
  766. iw = isigma + n;
  767. ivfw = iw + m;
  768. ivlw = ivfw + m;
  769. idx = 1;
  770. idxc = idx + n;
  771. idxp = idxc + n;
  772. /* Scale. */
  773. /* Computing MAX */
  774. d__1 = abs(*alpha), d__2 = abs(*beta);
  775. orgnrm = f2cmax(d__1,d__2);
  776. d__[*nl + 1] = 0.;
  777. i__1 = n;
  778. for (i__ = 1; i__ <= i__1; ++i__) {
  779. if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
  780. orgnrm = (d__1 = d__[i__], abs(d__1));
  781. }
  782. /* L10: */
  783. }
  784. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
  785. *alpha /= orgnrm;
  786. *beta /= orgnrm;
  787. /* Sort and Deflate singular values. */
  788. dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
  789. work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
  790. iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
  791. givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s,
  792. info);
  793. /* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
  794. dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1],
  795. ldgnum, &work[isigma], &work[iw], info);
  796. /* Report the possible convergence failure. */
  797. if (*info != 0) {
  798. return 0;
  799. }
  800. /* Save the poles if ICOMPQ = 1. */
  801. if (*icompq == 1) {
  802. dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
  803. dcopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
  804. }
  805. /* Unscale. */
  806. dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
  807. /* Prepare the IDXQ sorting permutation. */
  808. n1 = *k;
  809. n2 = n - *k;
  810. dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
  811. return 0;
  812. /* End of DLASD6 */
  813. } /* dlasd6_ */