You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd1.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__0 = 0;
  381. static doublereal c_b7 = 1.;
  382. static integer c__1 = 1;
  383. static integer c_n1 = -1;
  384. /* > \brief \b DLASD1 computes the SVD of an upper bidiagonal matrix B of the specified size. Used by sbdsdc.
  385. */
  386. /* =========== DOCUMENTATION =========== */
  387. /* Online html documentation available at */
  388. /* http://www.netlib.org/lapack/explore-html/ */
  389. /* > \htmlonly */
  390. /* > Download DLASD1 + dependencies */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd1.
  392. f"> */
  393. /* > [TGZ]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd1.
  395. f"> */
  396. /* > [ZIP]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd1.
  398. f"> */
  399. /* > [TXT]</a> */
  400. /* > \endhtmlonly */
  401. /* Definition: */
  402. /* =========== */
  403. /* SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT, */
  404. /* IDXQ, IWORK, WORK, INFO ) */
  405. /* INTEGER INFO, LDU, LDVT, NL, NR, SQRE */
  406. /* DOUBLE PRECISION ALPHA, BETA */
  407. /* INTEGER IDXQ( * ), IWORK( * ) */
  408. /* DOUBLE PRECISION D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
  415. /* > where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */
  416. /* > */
  417. /* > A related subroutine DLASD7 handles the case in which the singular */
  418. /* > values (and the singular vectors in factored form) are desired. */
  419. /* > */
  420. /* > DLASD1 computes the SVD as follows: */
  421. /* > */
  422. /* > ( D1(in) 0 0 0 ) */
  423. /* > B = U(in) * ( Z1**T a Z2**T b ) * VT(in) */
  424. /* > ( 0 0 D2(in) 0 ) */
  425. /* > */
  426. /* > = U(out) * ( D(out) 0) * VT(out) */
  427. /* > */
  428. /* > where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M */
  429. /* > with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
  430. /* > elsewhere; and the entry b is empty if SQRE = 0. */
  431. /* > */
  432. /* > The left singular vectors of the original matrix are stored in U, and */
  433. /* > the transpose of the right singular vectors are stored in VT, and the */
  434. /* > singular values are in D. The algorithm consists of three stages: */
  435. /* > */
  436. /* > The first stage consists of deflating the size of the problem */
  437. /* > when there are multiple singular values or when there are zeros in */
  438. /* > the Z vector. For each such occurrence the dimension of the */
  439. /* > secular equation problem is reduced by one. This stage is */
  440. /* > performed by the routine DLASD2. */
  441. /* > */
  442. /* > The second stage consists of calculating the updated */
  443. /* > singular values. This is done by finding the square roots of the */
  444. /* > roots of the secular equation via the routine DLASD4 (as called */
  445. /* > by DLASD3). This routine also calculates the singular vectors of */
  446. /* > the current problem. */
  447. /* > */
  448. /* > The final stage consists of computing the updated singular vectors */
  449. /* > directly using the updated singular values. The singular vectors */
  450. /* > for the current problem are multiplied with the singular vectors */
  451. /* > from the overall problem. */
  452. /* > \endverbatim */
  453. /* Arguments: */
  454. /* ========== */
  455. /* > \param[in] NL */
  456. /* > \verbatim */
  457. /* > NL is INTEGER */
  458. /* > The row dimension of the upper block. NL >= 1. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] NR */
  462. /* > \verbatim */
  463. /* > NR is INTEGER */
  464. /* > The row dimension of the lower block. NR >= 1. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in] SQRE */
  468. /* > \verbatim */
  469. /* > SQRE is INTEGER */
  470. /* > = 0: the lower block is an NR-by-NR square matrix. */
  471. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  472. /* > */
  473. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  474. /* > and column dimension M = N + SQRE. */
  475. /* > \endverbatim */
  476. /* > */
  477. /* > \param[in,out] D */
  478. /* > \verbatim */
  479. /* > D is DOUBLE PRECISION array, */
  480. /* > dimension (N = NL+NR+1). */
  481. /* > On entry D(1:NL,1:NL) contains the singular values of the */
  482. /* > upper block; and D(NL+2:N) contains the singular values of */
  483. /* > the lower block. On exit D(1:N) contains the singular values */
  484. /* > of the modified matrix. */
  485. /* > \endverbatim */
  486. /* > */
  487. /* > \param[in,out] ALPHA */
  488. /* > \verbatim */
  489. /* > ALPHA is DOUBLE PRECISION */
  490. /* > Contains the diagonal element associated with the added row. */
  491. /* > \endverbatim */
  492. /* > */
  493. /* > \param[in,out] BETA */
  494. /* > \verbatim */
  495. /* > BETA is DOUBLE PRECISION */
  496. /* > Contains the off-diagonal element associated with the added */
  497. /* > row. */
  498. /* > \endverbatim */
  499. /* > */
  500. /* > \param[in,out] U */
  501. /* > \verbatim */
  502. /* > U is DOUBLE PRECISION array, dimension(LDU,N) */
  503. /* > On entry U(1:NL, 1:NL) contains the left singular vectors of */
  504. /* > the upper block; U(NL+2:N, NL+2:N) contains the left singular */
  505. /* > vectors of the lower block. On exit U contains the left */
  506. /* > singular vectors of the bidiagonal matrix. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[in] LDU */
  510. /* > \verbatim */
  511. /* > LDU is INTEGER */
  512. /* > The leading dimension of the array U. LDU >= f2cmax( 1, N ). */
  513. /* > \endverbatim */
  514. /* > */
  515. /* > \param[in,out] VT */
  516. /* > \verbatim */
  517. /* > VT is DOUBLE PRECISION array, dimension(LDVT,M) */
  518. /* > where M = N + SQRE. */
  519. /* > On entry VT(1:NL+1, 1:NL+1)**T contains the right singular */
  520. /* > vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains */
  521. /* > the right singular vectors of the lower block. On exit */
  522. /* > VT**T contains the right singular vectors of the */
  523. /* > bidiagonal matrix. */
  524. /* > \endverbatim */
  525. /* > */
  526. /* > \param[in] LDVT */
  527. /* > \verbatim */
  528. /* > LDVT is INTEGER */
  529. /* > The leading dimension of the array VT. LDVT >= f2cmax( 1, M ). */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in,out] IDXQ */
  533. /* > \verbatim */
  534. /* > IDXQ is INTEGER array, dimension(N) */
  535. /* > This contains the permutation which will reintegrate the */
  536. /* > subproblem just solved back into sorted order, i.e. */
  537. /* > D( IDXQ( I = 1, N ) ) will be in ascending order. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[out] IWORK */
  541. /* > \verbatim */
  542. /* > IWORK is INTEGER array, dimension( 4 * N ) */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[out] WORK */
  546. /* > \verbatim */
  547. /* > WORK is DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[out] INFO */
  551. /* > \verbatim */
  552. /* > INFO is INTEGER */
  553. /* > = 0: successful exit. */
  554. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  555. /* > > 0: if INFO = 1, a singular value did not converge */
  556. /* > \endverbatim */
  557. /* Authors: */
  558. /* ======== */
  559. /* > \author Univ. of Tennessee */
  560. /* > \author Univ. of California Berkeley */
  561. /* > \author Univ. of Colorado Denver */
  562. /* > \author NAG Ltd. */
  563. /* > \date June 2016 */
  564. /* > \ingroup OTHERauxiliary */
  565. /* > \par Contributors: */
  566. /* ================== */
  567. /* > */
  568. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  569. /* > California at Berkeley, USA */
  570. /* > */
  571. /* ===================================================================== */
  572. /* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre,
  573. doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
  574. integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
  575. iwork, doublereal *work, integer *info)
  576. {
  577. /* System generated locals */
  578. integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
  579. doublereal d__1, d__2;
  580. /* Local variables */
  581. integer idxc, idxp, ldvt2, i__, k, m, n, n1, n2;
  582. extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *,
  583. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  584. doublereal *, integer *, doublereal *, integer *, doublereal *,
  585. doublereal *, integer *, doublereal *, integer *, integer *,
  586. integer *, integer *, integer *, integer *, integer *), dlasd3_(
  587. integer *, integer *, integer *, integer *, doublereal *,
  588. doublereal *, integer *, doublereal *, doublereal *, integer *,
  589. doublereal *, integer *, doublereal *, integer *, doublereal *,
  590. integer *, integer *, integer *, doublereal *, integer *);
  591. integer iq;
  592. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  593. doublereal *, doublereal *, integer *, integer *, doublereal *,
  594. integer *, integer *);
  595. integer iz;
  596. extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
  597. integer *, integer *, integer *);
  598. integer isigma;
  599. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  600. doublereal orgnrm;
  601. integer coltyp, iu2, ldq, idx, ldu2, ivt2;
  602. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  603. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  604. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  605. /* June 2016 */
  606. /* ===================================================================== */
  607. /* Test the input parameters. */
  608. /* Parameter adjustments */
  609. --d__;
  610. u_dim1 = *ldu;
  611. u_offset = 1 + u_dim1 * 1;
  612. u -= u_offset;
  613. vt_dim1 = *ldvt;
  614. vt_offset = 1 + vt_dim1 * 1;
  615. vt -= vt_offset;
  616. --idxq;
  617. --iwork;
  618. --work;
  619. /* Function Body */
  620. *info = 0;
  621. if (*nl < 1) {
  622. *info = -1;
  623. } else if (*nr < 1) {
  624. *info = -2;
  625. } else if (*sqre < 0 || *sqre > 1) {
  626. *info = -3;
  627. }
  628. if (*info != 0) {
  629. i__1 = -(*info);
  630. xerbla_("DLASD1", &i__1, (ftnlen)6);
  631. return 0;
  632. }
  633. n = *nl + *nr + 1;
  634. m = n + *sqre;
  635. /* The following values are for bookkeeping purposes only. They are */
  636. /* integer pointers which indicate the portion of the workspace */
  637. /* used by a particular array in DLASD2 and DLASD3. */
  638. ldu2 = n;
  639. ldvt2 = m;
  640. iz = 1;
  641. isigma = iz + m;
  642. iu2 = isigma + n;
  643. ivt2 = iu2 + ldu2 * n;
  644. iq = ivt2 + ldvt2 * m;
  645. idx = 1;
  646. idxc = idx + n;
  647. coltyp = idxc + n;
  648. idxp = coltyp + n;
  649. /* Scale. */
  650. /* Computing MAX */
  651. d__1 = abs(*alpha), d__2 = abs(*beta);
  652. orgnrm = f2cmax(d__1,d__2);
  653. d__[*nl + 1] = 0.;
  654. i__1 = n;
  655. for (i__ = 1; i__ <= i__1; ++i__) {
  656. if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
  657. orgnrm = (d__1 = d__[i__], abs(d__1));
  658. }
  659. /* L10: */
  660. }
  661. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
  662. *alpha /= orgnrm;
  663. *beta /= orgnrm;
  664. /* Deflate singular values. */
  665. dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
  666. ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
  667. work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
  668. idxq[1], &iwork[coltyp], info);
  669. /* Solve Secular Equation and update singular vectors. */
  670. ldq = k;
  671. dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
  672. u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
  673. ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
  674. /* Report the convergence failure. */
  675. if (*info != 0) {
  676. return 0;
  677. }
  678. /* Unscale. */
  679. dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
  680. /* Prepare the IDXQ sorting permutation. */
  681. n1 = k;
  682. n2 = n - k;
  683. dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
  684. return 0;
  685. /* End of DLASD1 */
  686. } /* dlasd1_ */