You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlag2.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as nece
  380. ssary to avoid over-/underflow. */
  381. /* =========== DOCUMENTATION =========== */
  382. /* Online html documentation available at */
  383. /* http://www.netlib.org/lapack/explore-html/ */
  384. /* > \htmlonly */
  385. /* > Download DLAG2 + dependencies */
  386. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlag2.f
  387. "> */
  388. /* > [TGZ]</a> */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlag2.f
  390. "> */
  391. /* > [ZIP]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlag2.f
  393. "> */
  394. /* > [TXT]</a> */
  395. /* > \endhtmlonly */
  396. /* Definition: */
  397. /* =========== */
  398. /* SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, */
  399. /* WR2, WI ) */
  400. /* INTEGER LDA, LDB */
  401. /* DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 */
  402. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */
  403. /* > \par Purpose: */
  404. /* ============= */
  405. /* > */
  406. /* > \verbatim */
  407. /* > */
  408. /* > DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
  409. /* > problem A - w B, with scaling as necessary to avoid over-/underflow. */
  410. /* > */
  411. /* > The scaling factor "s" results in a modified eigenvalue equation */
  412. /* > */
  413. /* > s A - w B */
  414. /* > */
  415. /* > where s is a non-negative scaling factor chosen so that w, w B, */
  416. /* > and s A do not overflow and, if possible, do not underflow, either. */
  417. /* > \endverbatim */
  418. /* Arguments: */
  419. /* ========== */
  420. /* > \param[in] A */
  421. /* > \verbatim */
  422. /* > A is DOUBLE PRECISION array, dimension (LDA, 2) */
  423. /* > On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
  424. /* > is less than 1/SAFMIN. Entries less than */
  425. /* > sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in] LDA */
  429. /* > \verbatim */
  430. /* > LDA is INTEGER */
  431. /* > The leading dimension of the array A. LDA >= 2. */
  432. /* > \endverbatim */
  433. /* > */
  434. /* > \param[in] B */
  435. /* > \verbatim */
  436. /* > B is DOUBLE PRECISION array, dimension (LDB, 2) */
  437. /* > On entry, the 2 x 2 upper triangular matrix B. It is */
  438. /* > assumed that the one-norm of B is less than 1/SAFMIN. The */
  439. /* > diagonals should be at least sqrt(SAFMIN) times the largest */
  440. /* > element of B (in absolute value); if a diagonal is smaller */
  441. /* > than that, then +/- sqrt(SAFMIN) will be used instead of */
  442. /* > that diagonal. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] LDB */
  446. /* > \verbatim */
  447. /* > LDB is INTEGER */
  448. /* > The leading dimension of the array B. LDB >= 2. */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[in] SAFMIN */
  452. /* > \verbatim */
  453. /* > SAFMIN is DOUBLE PRECISION */
  454. /* > The smallest positive number s.t. 1/SAFMIN does not */
  455. /* > overflow. (This should always be DLAMCH('S') -- it is an */
  456. /* > argument in order to avoid having to call DLAMCH frequently.) */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[out] SCALE1 */
  460. /* > \verbatim */
  461. /* > SCALE1 is DOUBLE PRECISION */
  462. /* > A scaling factor used to avoid over-/underflow in the */
  463. /* > eigenvalue equation which defines the first eigenvalue. If */
  464. /* > the eigenvalues are complex, then the eigenvalues are */
  465. /* > ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
  466. /* > exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
  467. /* > will always be positive. If the eigenvalues are real, then */
  468. /* > the first (real) eigenvalue is WR1 / SCALE1 , but this may */
  469. /* > overflow or underflow, and in fact, SCALE1 may be zero or */
  470. /* > less than the underflow threshold if the exact eigenvalue */
  471. /* > is sufficiently large. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[out] SCALE2 */
  475. /* > \verbatim */
  476. /* > SCALE2 is DOUBLE PRECISION */
  477. /* > A scaling factor used to avoid over-/underflow in the */
  478. /* > eigenvalue equation which defines the second eigenvalue. If */
  479. /* > the eigenvalues are complex, then SCALE2=SCALE1. If the */
  480. /* > eigenvalues are real, then the second (real) eigenvalue is */
  481. /* > WR2 / SCALE2 , but this may overflow or underflow, and in */
  482. /* > fact, SCALE2 may be zero or less than the underflow */
  483. /* > threshold if the exact eigenvalue is sufficiently large. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[out] WR1 */
  487. /* > \verbatim */
  488. /* > WR1 is DOUBLE PRECISION */
  489. /* > If the eigenvalue is real, then WR1 is SCALE1 times the */
  490. /* > eigenvalue closest to the (2,2) element of A B**(-1). If the */
  491. /* > eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
  492. /* > part of the eigenvalues. */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[out] WR2 */
  496. /* > \verbatim */
  497. /* > WR2 is DOUBLE PRECISION */
  498. /* > If the eigenvalue is real, then WR2 is SCALE2 times the */
  499. /* > other eigenvalue. If the eigenvalue is complex, then */
  500. /* > WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
  501. /* > \endverbatim */
  502. /* > */
  503. /* > \param[out] WI */
  504. /* > \verbatim */
  505. /* > WI is DOUBLE PRECISION */
  506. /* > If the eigenvalue is real, then WI is zero. If the */
  507. /* > eigenvalue is complex, then WI is SCALE1 times the imaginary */
  508. /* > part of the eigenvalues. WI will always be non-negative. */
  509. /* > \endverbatim */
  510. /* Authors: */
  511. /* ======== */
  512. /* > \author Univ. of Tennessee */
  513. /* > \author Univ. of California Berkeley */
  514. /* > \author Univ. of Colorado Denver */
  515. /* > \author NAG Ltd. */
  516. /* > \date June 2016 */
  517. /* > \ingroup doubleOTHERauxiliary */
  518. /* ===================================================================== */
  519. /* Subroutine */ int dlag2_(doublereal *a, integer *lda, doublereal *b,
  520. integer *ldb, doublereal *safmin, doublereal *scale1, doublereal *
  521. scale2, doublereal *wr1, doublereal *wr2, doublereal *wi)
  522. {
  523. /* System generated locals */
  524. integer a_dim1, a_offset, b_dim1, b_offset;
  525. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  526. /* Local variables */
  527. doublereal diff, bmin, wbig, wabs, wdet, r__, binv11, binv22, discr,
  528. anorm, bnorm, bsize, shift, c1, c2, c3, c4, c5, rtmin, rtmax,
  529. wsize, s1, s2, a11, a12, a21, a22, b11, b12, b22, ascale, bscale,
  530. pp, qq, ss, wscale, safmax, wsmall, as11, as12, as22, sum, abi22;
  531. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  532. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  533. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  534. /* June 2016 */
  535. /* ===================================================================== */
  536. /* Parameter adjustments */
  537. a_dim1 = *lda;
  538. a_offset = 1 + a_dim1 * 1;
  539. a -= a_offset;
  540. b_dim1 = *ldb;
  541. b_offset = 1 + b_dim1 * 1;
  542. b -= b_offset;
  543. /* Function Body */
  544. rtmin = sqrt(*safmin);
  545. rtmax = 1. / rtmin;
  546. safmax = 1. / *safmin;
  547. /* Scale A */
  548. /* Computing MAX */
  549. d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
  550. d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 =
  551. a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = f2cmax(d__5,d__6);
  552. anorm = f2cmax(d__5,*safmin);
  553. ascale = 1. / anorm;
  554. a11 = ascale * a[a_dim1 + 1];
  555. a21 = ascale * a[a_dim1 + 2];
  556. a12 = ascale * a[(a_dim1 << 1) + 1];
  557. a22 = ascale * a[(a_dim1 << 1) + 2];
  558. /* Perturb B if necessary to insure non-singularity */
  559. b11 = b[b_dim1 + 1];
  560. b12 = b[(b_dim1 << 1) + 1];
  561. b22 = b[(b_dim1 << 1) + 2];
  562. /* Computing MAX */
  563. d__1 = abs(b11), d__2 = abs(b12), d__1 = f2cmax(d__1,d__2), d__2 = abs(b22),
  564. d__1 = f2cmax(d__1,d__2);
  565. bmin = rtmin * f2cmax(d__1,rtmin);
  566. if (abs(b11) < bmin) {
  567. b11 = d_sign(&bmin, &b11);
  568. }
  569. if (abs(b22) < bmin) {
  570. b22 = d_sign(&bmin, &b22);
  571. }
  572. /* Scale B */
  573. /* Computing MAX */
  574. d__1 = abs(b11), d__2 = abs(b12) + abs(b22), d__1 = f2cmax(d__1,d__2);
  575. bnorm = f2cmax(d__1,*safmin);
  576. /* Computing MAX */
  577. d__1 = abs(b11), d__2 = abs(b22);
  578. bsize = f2cmax(d__1,d__2);
  579. bscale = 1. / bsize;
  580. b11 *= bscale;
  581. b12 *= bscale;
  582. b22 *= bscale;
  583. /* Compute larger eigenvalue by method described by C. van Loan */
  584. /* ( AS is A shifted by -SHIFT*B ) */
  585. binv11 = 1. / b11;
  586. binv22 = 1. / b22;
  587. s1 = a11 * binv11;
  588. s2 = a22 * binv22;
  589. if (abs(s1) <= abs(s2)) {
  590. as12 = a12 - s1 * b12;
  591. as22 = a22 - s1 * b22;
  592. ss = a21 * (binv11 * binv22);
  593. abi22 = as22 * binv22 - ss * b12;
  594. pp = abi22 * .5;
  595. shift = s1;
  596. } else {
  597. as12 = a12 - s2 * b12;
  598. as11 = a11 - s2 * b11;
  599. ss = a21 * (binv11 * binv22);
  600. abi22 = -ss * b12;
  601. pp = (as11 * binv11 + abi22) * .5;
  602. shift = s2;
  603. }
  604. qq = ss * as12;
  605. if ((d__1 = pp * rtmin, abs(d__1)) >= 1.) {
  606. /* Computing 2nd power */
  607. d__1 = rtmin * pp;
  608. discr = d__1 * d__1 + qq * *safmin;
  609. r__ = sqrt((abs(discr))) * rtmax;
  610. } else {
  611. /* Computing 2nd power */
  612. d__1 = pp;
  613. if (d__1 * d__1 + abs(qq) <= *safmin) {
  614. /* Computing 2nd power */
  615. d__1 = rtmax * pp;
  616. discr = d__1 * d__1 + qq * safmax;
  617. r__ = sqrt((abs(discr))) * rtmin;
  618. } else {
  619. /* Computing 2nd power */
  620. d__1 = pp;
  621. discr = d__1 * d__1 + qq;
  622. r__ = sqrt((abs(discr)));
  623. }
  624. }
  625. /* Note: the test of R in the following IF is to cover the case when */
  626. /* DISCR is small and negative and is flushed to zero during */
  627. /* the calculation of R. On machines which have a consistent */
  628. /* flush-to-zero threshold and handle numbers above that */
  629. /* threshold correctly, it would not be necessary. */
  630. if (discr >= 0. || r__ == 0.) {
  631. sum = pp + d_sign(&r__, &pp);
  632. diff = pp - d_sign(&r__, &pp);
  633. wbig = shift + sum;
  634. /* Compute smaller eigenvalue */
  635. wsmall = shift + diff;
  636. /* Computing MAX */
  637. d__1 = abs(wsmall);
  638. if (abs(wbig) * .5 > f2cmax(d__1,*safmin)) {
  639. wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
  640. wsmall = wdet / wbig;
  641. }
  642. /* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
  643. /* for WR1. */
  644. if (pp > abi22) {
  645. *wr1 = f2cmin(wbig,wsmall);
  646. *wr2 = f2cmax(wbig,wsmall);
  647. } else {
  648. *wr1 = f2cmax(wbig,wsmall);
  649. *wr2 = f2cmin(wbig,wsmall);
  650. }
  651. *wi = 0.;
  652. } else {
  653. /* Complex eigenvalues */
  654. *wr1 = shift + pp;
  655. *wr2 = *wr1;
  656. *wi = r__;
  657. }
  658. /* Further scaling to avoid underflow and overflow in computing */
  659. /* SCALE1 and overflow in computing w*B. */
  660. /* This scale factor (WSCALE) is bounded from above using C1 and C2, */
  661. /* and from below using C3 and C4. */
  662. /* C1 implements the condition s A must never overflow. */
  663. /* C2 implements the condition w B must never overflow. */
  664. /* C3, with C2, */
  665. /* implement the condition that s A - w B must never overflow. */
  666. /* C4 implements the condition s should not underflow. */
  667. /* C5 implements the condition f2cmax(s,|w|) should be at least 2. */
  668. c1 = bsize * (*safmin * f2cmax(1.,ascale));
  669. c2 = *safmin * f2cmax(1.,bnorm);
  670. c3 = bsize * *safmin;
  671. if (ascale <= 1. && bsize <= 1.) {
  672. /* Computing MIN */
  673. d__1 = 1., d__2 = ascale / *safmin * bsize;
  674. c4 = f2cmin(d__1,d__2);
  675. } else {
  676. c4 = 1.;
  677. }
  678. if (ascale <= 1. || bsize <= 1.) {
  679. /* Computing MIN */
  680. d__1 = 1., d__2 = ascale * bsize;
  681. c5 = f2cmin(d__1,d__2);
  682. } else {
  683. c5 = 1.;
  684. }
  685. /* Scale first eigenvalue */
  686. wabs = abs(*wr1) + abs(*wi);
  687. /* Computing MAX */
  688. /* Computing MIN */
  689. d__3 = c4, d__4 = f2cmax(wabs,c5) * .5;
  690. d__1 = f2cmax(*safmin,c1), d__2 = (wabs * c2 + c3) * 1.0000100000000001,
  691. d__1 = f2cmax(d__1,d__2), d__2 = f2cmin(d__3,d__4);
  692. wsize = f2cmax(d__1,d__2);
  693. if (wsize != 1.) {
  694. wscale = 1. / wsize;
  695. if (wsize > 1.) {
  696. *scale1 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  697. } else {
  698. *scale1 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  699. }
  700. *wr1 *= wscale;
  701. if (*wi != 0.) {
  702. *wi *= wscale;
  703. *wr2 = *wr1;
  704. *scale2 = *scale1;
  705. }
  706. } else {
  707. *scale1 = ascale * bsize;
  708. *scale2 = *scale1;
  709. }
  710. /* Scale second eigenvalue (if real) */
  711. if (*wi == 0.) {
  712. /* Computing MAX */
  713. /* Computing MIN */
  714. /* Computing MAX */
  715. d__5 = abs(*wr2);
  716. d__3 = c4, d__4 = f2cmax(d__5,c5) * .5;
  717. d__1 = f2cmax(*safmin,c1), d__2 = (abs(*wr2) * c2 + c3) *
  718. 1.0000100000000001, d__1 = f2cmax(d__1,d__2), d__2 = f2cmin(d__3,
  719. d__4);
  720. wsize = f2cmax(d__1,d__2);
  721. if (wsize != 1.) {
  722. wscale = 1. / wsize;
  723. if (wsize > 1.) {
  724. *scale2 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  725. } else {
  726. *scale2 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  727. }
  728. *wr2 *= wscale;
  729. } else {
  730. *scale2 = ascale * bsize;
  731. }
  732. }
  733. /* End of DLAG2 */
  734. return 0;
  735. } /* dlag2_ */