You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaexc.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c__4 = 4;
  382. static logical c_false = FALSE_;
  383. static integer c_n1 = -1;
  384. static integer c__2 = 2;
  385. static integer c__3 = 3;
  386. /* > \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica
  387. l form, by an orthogonal similarity transformation. */
  388. /* =========== DOCUMENTATION =========== */
  389. /* Online html documentation available at */
  390. /* http://www.netlib.org/lapack/explore-html/ */
  391. /* > \htmlonly */
  392. /* > Download DLAEXC + dependencies */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaexc.
  394. f"> */
  395. /* > [TGZ]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaexc.
  397. f"> */
  398. /* > [ZIP]</a> */
  399. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaexc.
  400. f"> */
  401. /* > [TXT]</a> */
  402. /* > \endhtmlonly */
  403. /* Definition: */
  404. /* =========== */
  405. /* SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, */
  406. /* INFO ) */
  407. /* LOGICAL WANTQ */
  408. /* INTEGER INFO, J1, LDQ, LDT, N, N1, N2 */
  409. /* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) */
  410. /* > \par Purpose: */
  411. /* ============= */
  412. /* > */
  413. /* > \verbatim */
  414. /* > */
  415. /* > DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in */
  416. /* > an upper quasi-triangular matrix T by an orthogonal similarity */
  417. /* > transformation. */
  418. /* > */
  419. /* > T must be in Schur canonical form, that is, block upper triangular */
  420. /* > with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block */
  421. /* > has its diagonal elemnts equal and its off-diagonal elements of */
  422. /* > opposite sign. */
  423. /* > \endverbatim */
  424. /* Arguments: */
  425. /* ========== */
  426. /* > \param[in] WANTQ */
  427. /* > \verbatim */
  428. /* > WANTQ is LOGICAL */
  429. /* > = .TRUE. : accumulate the transformation in the matrix Q; */
  430. /* > = .FALSE.: do not accumulate the transformation. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] N */
  434. /* > \verbatim */
  435. /* > N is INTEGER */
  436. /* > The order of the matrix T. N >= 0. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in,out] T */
  440. /* > \verbatim */
  441. /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
  442. /* > On entry, the upper quasi-triangular matrix T, in Schur */
  443. /* > canonical form. */
  444. /* > On exit, the updated matrix T, again in Schur canonical form. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in] LDT */
  448. /* > \verbatim */
  449. /* > LDT is INTEGER */
  450. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in,out] Q */
  454. /* > \verbatim */
  455. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  456. /* > On entry, if WANTQ is .TRUE., the orthogonal matrix Q. */
  457. /* > On exit, if WANTQ is .TRUE., the updated matrix Q. */
  458. /* > If WANTQ is .FALSE., Q is not referenced. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] LDQ */
  462. /* > \verbatim */
  463. /* > LDQ is INTEGER */
  464. /* > The leading dimension of the array Q. */
  465. /* > LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] J1 */
  469. /* > \verbatim */
  470. /* > J1 is INTEGER */
  471. /* > The index of the first row of the first block T11. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in] N1 */
  475. /* > \verbatim */
  476. /* > N1 is INTEGER */
  477. /* > The order of the first block T11. N1 = 0, 1 or 2. */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[in] N2 */
  481. /* > \verbatim */
  482. /* > N2 is INTEGER */
  483. /* > The order of the second block T22. N2 = 0, 1 or 2. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[out] WORK */
  487. /* > \verbatim */
  488. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[out] INFO */
  492. /* > \verbatim */
  493. /* > INFO is INTEGER */
  494. /* > = 0: successful exit */
  495. /* > = 1: the transformed matrix T would be too far from Schur */
  496. /* > form; the blocks are not swapped and T and Q are */
  497. /* > unchanged. */
  498. /* > \endverbatim */
  499. /* Authors: */
  500. /* ======== */
  501. /* > \author Univ. of Tennessee */
  502. /* > \author Univ. of California Berkeley */
  503. /* > \author Univ. of Colorado Denver */
  504. /* > \author NAG Ltd. */
  505. /* > \date December 2016 */
  506. /* > \ingroup doubleOTHERauxiliary */
  507. /* ===================================================================== */
  508. /* Subroutine */ int dlaexc_(logical *wantq, integer *n, doublereal *t,
  509. integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1,
  510. integer *n2, doublereal *work, integer *info)
  511. {
  512. /* System generated locals */
  513. integer q_dim1, q_offset, t_dim1, t_offset, i__1;
  514. doublereal d__1, d__2, d__3;
  515. /* Local variables */
  516. integer ierr;
  517. doublereal temp;
  518. extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
  519. doublereal *, integer *, doublereal *, doublereal *);
  520. doublereal d__[16] /* was [4][4] */;
  521. integer k;
  522. doublereal u[3], scale, x[4] /* was [2][2] */, dnorm;
  523. integer j2, j3, j4;
  524. doublereal xnorm, u1[3], u2[3];
  525. extern /* Subroutine */ int dlanv2_(doublereal *, doublereal *,
  526. doublereal *, doublereal *, doublereal *, doublereal *,
  527. doublereal *, doublereal *, doublereal *, doublereal *), dlasy2_(
  528. logical *, logical *, integer *, integer *, integer *, doublereal
  529. *, integer *, doublereal *, integer *, doublereal *, integer *,
  530. doublereal *, doublereal *, integer *, doublereal *, integer *);
  531. integer nd;
  532. doublereal cs, t11, t22;
  533. extern doublereal dlamch_(char *);
  534. doublereal t33;
  535. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  536. integer *, doublereal *);
  537. extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
  538. integer *, doublereal *);
  539. doublereal sn;
  540. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  541. doublereal *, integer *, doublereal *, integer *),
  542. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  543. doublereal *), dlarfx_(char *, integer *, integer *, doublereal *,
  544. doublereal *, doublereal *, integer *, doublereal *);
  545. doublereal thresh, smlnum, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2;
  546. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  547. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  548. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  549. /* December 2016 */
  550. /* ===================================================================== */
  551. /* Parameter adjustments */
  552. t_dim1 = *ldt;
  553. t_offset = 1 + t_dim1 * 1;
  554. t -= t_offset;
  555. q_dim1 = *ldq;
  556. q_offset = 1 + q_dim1 * 1;
  557. q -= q_offset;
  558. --work;
  559. /* Function Body */
  560. *info = 0;
  561. /* Quick return if possible */
  562. if (*n == 0 || *n1 == 0 || *n2 == 0) {
  563. return 0;
  564. }
  565. if (*j1 + *n1 > *n) {
  566. return 0;
  567. }
  568. j2 = *j1 + 1;
  569. j3 = *j1 + 2;
  570. j4 = *j1 + 3;
  571. if (*n1 == 1 && *n2 == 1) {
  572. /* Swap two 1-by-1 blocks. */
  573. t11 = t[*j1 + *j1 * t_dim1];
  574. t22 = t[j2 + j2 * t_dim1];
  575. /* Determine the transformation to perform the interchange. */
  576. d__1 = t22 - t11;
  577. dlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp);
  578. /* Apply transformation to the matrix T. */
  579. if (j3 <= *n) {
  580. i__1 = *n - *j1 - 1;
  581. drot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1],
  582. ldt, &cs, &sn);
  583. }
  584. i__1 = *j1 - 1;
  585. drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1,
  586. &cs, &sn);
  587. t[*j1 + *j1 * t_dim1] = t22;
  588. t[j2 + j2 * t_dim1] = t11;
  589. if (*wantq) {
  590. /* Accumulate transformation in the matrix Q. */
  591. drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1,
  592. &cs, &sn);
  593. }
  594. } else {
  595. /* Swapping involves at least one 2-by-2 block. */
  596. /* Copy the diagonal block of order N1+N2 to the local array D */
  597. /* and compute its norm. */
  598. nd = *n1 + *n2;
  599. dlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4);
  600. dnorm = dlange_("Max", &nd, &nd, d__, &c__4, &work[1]);
  601. /* Compute machine-dependent threshold for test for accepting */
  602. /* swap. */
  603. eps = dlamch_("P");
  604. smlnum = dlamch_("S") / eps;
  605. /* Computing MAX */
  606. d__1 = eps * 10. * dnorm;
  607. thresh = f2cmax(d__1,smlnum);
  608. /* Solve T11*X - X*T22 = scale*T12 for X. */
  609. dlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 +
  610. (*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, &
  611. scale, x, &c__2, &xnorm, &ierr);
  612. /* Swap the adjacent diagonal blocks. */
  613. k = *n1 + *n1 + *n2 - 3;
  614. switch (k) {
  615. case 1: goto L10;
  616. case 2: goto L20;
  617. case 3: goto L30;
  618. }
  619. L10:
  620. /* N1 = 1, N2 = 2: generate elementary reflector H so that: */
  621. /* ( scale, X11, X12 ) H = ( 0, 0, * ) */
  622. u[0] = scale;
  623. u[1] = x[0];
  624. u[2] = x[2];
  625. dlarfg_(&c__3, &u[2], u, &c__1, &tau);
  626. u[2] = 1.;
  627. t11 = t[*j1 + *j1 * t_dim1];
  628. /* Perform swap provisionally on diagonal block in D. */
  629. dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  630. dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  631. /* Test whether to reject swap. */
  632. /* Computing MAX */
  633. d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = f2cmax(d__2,d__3), d__3 =
  634. (d__1 = d__[10] - t11, abs(d__1));
  635. if (f2cmax(d__2,d__3) > thresh) {
  636. goto L50;
  637. }
  638. /* Accept swap: apply transformation to the entire matrix T. */
  639. i__1 = *n - *j1 + 1;
  640. dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, &
  641. work[1]);
  642. dlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
  643. t[j3 + *j1 * t_dim1] = 0.;
  644. t[j3 + j2 * t_dim1] = 0.;
  645. t[j3 + j3 * t_dim1] = t11;
  646. if (*wantq) {
  647. /* Accumulate transformation in the matrix Q. */
  648. dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
  649. 1]);
  650. }
  651. goto L40;
  652. L20:
  653. /* N1 = 2, N2 = 1: generate elementary reflector H so that: */
  654. /* H ( -X11 ) = ( * ) */
  655. /* ( -X21 ) = ( 0 ) */
  656. /* ( scale ) = ( 0 ) */
  657. u[0] = -x[0];
  658. u[1] = -x[1];
  659. u[2] = scale;
  660. dlarfg_(&c__3, u, &u[1], &c__1, &tau);
  661. u[0] = 1.;
  662. t33 = t[j3 + j3 * t_dim1];
  663. /* Perform swap provisionally on diagonal block in D. */
  664. dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  665. dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  666. /* Test whether to reject swap. */
  667. /* Computing MAX */
  668. d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = f2cmax(d__2,d__3), d__3 =
  669. (d__1 = d__[0] - t33, abs(d__1));
  670. if (f2cmax(d__2,d__3) > thresh) {
  671. goto L50;
  672. }
  673. /* Accept swap: apply transformation to the entire matrix T. */
  674. dlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
  675. i__1 = *n - *j1;
  676. dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[
  677. 1]);
  678. t[*j1 + *j1 * t_dim1] = t33;
  679. t[j2 + *j1 * t_dim1] = 0.;
  680. t[j3 + *j1 * t_dim1] = 0.;
  681. if (*wantq) {
  682. /* Accumulate transformation in the matrix Q. */
  683. dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
  684. 1]);
  685. }
  686. goto L40;
  687. L30:
  688. /* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so */
  689. /* that: */
  690. /* H(2) H(1) ( -X11 -X12 ) = ( * * ) */
  691. /* ( -X21 -X22 ) ( 0 * ) */
  692. /* ( scale 0 ) ( 0 0 ) */
  693. /* ( 0 scale ) ( 0 0 ) */
  694. u1[0] = -x[0];
  695. u1[1] = -x[1];
  696. u1[2] = scale;
  697. dlarfg_(&c__3, u1, &u1[1], &c__1, &tau1);
  698. u1[0] = 1.;
  699. temp = -tau1 * (x[2] + u1[1] * x[3]);
  700. u2[0] = -temp * u1[1] - x[3];
  701. u2[1] = -temp * u1[2];
  702. u2[2] = scale;
  703. dlarfg_(&c__3, u2, &u2[1], &c__1, &tau2);
  704. u2[0] = 1.;
  705. /* Perform swap provisionally on diagonal block in D. */
  706. dlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1])
  707. ;
  708. dlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1])
  709. ;
  710. dlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]);
  711. dlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]);
  712. /* Test whether to reject swap. */
  713. /* Computing MAX */
  714. d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = f2cmax(d__1,d__2), d__2 =
  715. abs(d__[3]), d__1 = f2cmax(d__1,d__2), d__2 = abs(d__[7]);
  716. if (f2cmax(d__1,d__2) > thresh) {
  717. goto L50;
  718. }
  719. /* Accept swap: apply transformation to the entire matrix T. */
  720. i__1 = *n - *j1 + 1;
  721. dlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, &
  722. work[1]);
  723. dlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[
  724. 1]);
  725. i__1 = *n - *j1 + 1;
  726. dlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, &
  727. work[1]);
  728. dlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1]
  729. );
  730. t[j3 + *j1 * t_dim1] = 0.;
  731. t[j3 + j2 * t_dim1] = 0.;
  732. t[j4 + *j1 * t_dim1] = 0.;
  733. t[j4 + j2 * t_dim1] = 0.;
  734. if (*wantq) {
  735. /* Accumulate transformation in the matrix Q. */
  736. dlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, &
  737. work[1]);
  738. dlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[
  739. 1]);
  740. }
  741. L40:
  742. if (*n2 == 2) {
  743. /* Standardize new 2-by-2 block T11 */
  744. dlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + *
  745. j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, &
  746. wi2, &cs, &sn);
  747. i__1 = *n - *j1 - 1;
  748. drot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2)
  749. * t_dim1], ldt, &cs, &sn);
  750. i__1 = *j1 - 1;
  751. drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &
  752. c__1, &cs, &sn);
  753. if (*wantq) {
  754. drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &
  755. c__1, &cs, &sn);
  756. }
  757. }
  758. if (*n1 == 2) {
  759. /* Standardize new 2-by-2 block T22 */
  760. j3 = *j1 + *n2;
  761. j4 = j3 + 1;
  762. dlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 *
  763. t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, &
  764. cs, &sn);
  765. if (j3 + 2 <= *n) {
  766. i__1 = *n - j3 - 1;
  767. drot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2)
  768. * t_dim1], ldt, &cs, &sn);
  769. }
  770. i__1 = j3 - 1;
  771. drot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], &
  772. c__1, &cs, &sn);
  773. if (*wantq) {
  774. drot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], &
  775. c__1, &cs, &sn);
  776. }
  777. }
  778. }
  779. return 0;
  780. /* Exit with INFO = 1 if swap was rejected. */
  781. L50:
  782. *info = 1;
  783. return 0;
  784. /* End of DLAEXC */
  785. } /* dlaexc_ */