You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggev3.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c_n1 = -1;
  381. static integer c__1 = 1;
  382. static integer c__0 = 0;
  383. static doublereal c_b38 = 0.;
  384. static doublereal c_b39 = 1.;
  385. /* > \brief <b> DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  386. rices (blocked algorithm)</b> */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download DGGEV3 + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev3.
  393. f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev3.
  396. f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev3.
  399. f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, */
  405. /* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, */
  406. /* $ INFO ) */
  407. /* CHARACTER JOBVL, JOBVR */
  408. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  409. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  410. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  411. /* $ VR( LDVR, * ), WORK( * ) */
  412. /* > \par Purpose: */
  413. /* ============= */
  414. /* > */
  415. /* > \verbatim */
  416. /* > */
  417. /* > DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  418. /* > the generalized eigenvalues, and optionally, the left and/or right */
  419. /* > generalized eigenvectors. */
  420. /* > */
  421. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  422. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  423. /* > singular. It is usually represented as the pair (alpha,beta), as */
  424. /* > there is a reasonable interpretation for beta=0, and even for both */
  425. /* > being zero. */
  426. /* > */
  427. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  428. /* > of (A,B) satisfies */
  429. /* > */
  430. /* > A * v(j) = lambda(j) * B * v(j). */
  431. /* > */
  432. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  433. /* > of (A,B) satisfies */
  434. /* > */
  435. /* > u(j)**H * A = lambda(j) * u(j)**H * B . */
  436. /* > */
  437. /* > where u(j)**H is the conjugate-transpose of u(j). */
  438. /* > */
  439. /* > \endverbatim */
  440. /* Arguments: */
  441. /* ========== */
  442. /* > \param[in] JOBVL */
  443. /* > \verbatim */
  444. /* > JOBVL is CHARACTER*1 */
  445. /* > = 'N': do not compute the left generalized eigenvectors; */
  446. /* > = 'V': compute the left generalized eigenvectors. */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[in] JOBVR */
  450. /* > \verbatim */
  451. /* > JOBVR is CHARACTER*1 */
  452. /* > = 'N': do not compute the right generalized eigenvectors; */
  453. /* > = 'V': compute the right generalized eigenvectors. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] N */
  457. /* > \verbatim */
  458. /* > N is INTEGER */
  459. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in,out] A */
  463. /* > \verbatim */
  464. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  465. /* > On entry, the matrix A in the pair (A,B). */
  466. /* > On exit, A has been overwritten. */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[in] LDA */
  470. /* > \verbatim */
  471. /* > LDA is INTEGER */
  472. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  473. /* > \endverbatim */
  474. /* > */
  475. /* > \param[in,out] B */
  476. /* > \verbatim */
  477. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  478. /* > On entry, the matrix B in the pair (A,B). */
  479. /* > On exit, B has been overwritten. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDB */
  483. /* > \verbatim */
  484. /* > LDB is INTEGER */
  485. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[out] ALPHAR */
  489. /* > \verbatim */
  490. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  491. /* > \endverbatim */
  492. /* > */
  493. /* > \param[out] ALPHAI */
  494. /* > \verbatim */
  495. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  496. /* > \endverbatim */
  497. /* > */
  498. /* > \param[out] BETA */
  499. /* > \verbatim */
  500. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  501. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  502. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  503. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  504. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  505. /* > ALPHAI(j+1) negative. */
  506. /* > */
  507. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  508. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  509. /* > Thus, the user should avoid naively computing the ratio */
  510. /* > alpha/beta. However, ALPHAR and ALPHAI will be always less */
  511. /* > than and usually comparable with norm(A) in magnitude, and */
  512. /* > BETA always less than and usually comparable with norm(B). */
  513. /* > \endverbatim */
  514. /* > */
  515. /* > \param[out] VL */
  516. /* > \verbatim */
  517. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  518. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  519. /* > after another in the columns of VL, in the same order as */
  520. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  521. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  522. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  523. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  524. /* > Each eigenvector is scaled so the largest component has */
  525. /* > abs(real part)+abs(imag. part)=1. */
  526. /* > Not referenced if JOBVL = 'N'. */
  527. /* > \endverbatim */
  528. /* > */
  529. /* > \param[in] LDVL */
  530. /* > \verbatim */
  531. /* > LDVL is INTEGER */
  532. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  533. /* > if JOBVL = 'V', LDVL >= N. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[out] VR */
  537. /* > \verbatim */
  538. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  539. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  540. /* > after another in the columns of VR, in the same order as */
  541. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  542. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  543. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  544. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  545. /* > Each eigenvector is scaled so the largest component has */
  546. /* > abs(real part)+abs(imag. part)=1. */
  547. /* > Not referenced if JOBVR = 'N'. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] LDVR */
  551. /* > \verbatim */
  552. /* > LDVR is INTEGER */
  553. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  554. /* > if JOBVR = 'V', LDVR >= N. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] WORK */
  558. /* > \verbatim */
  559. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  560. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] LWORK */
  564. /* > \verbatim */
  565. /* > LWORK is INTEGER */
  566. /* > */
  567. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  568. /* > only calculates the optimal size of the WORK array, returns */
  569. /* > this value as the first entry of the WORK array, and no error */
  570. /* > message related to LWORK is issued by XERBLA. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] INFO */
  574. /* > \verbatim */
  575. /* > INFO is INTEGER */
  576. /* > = 0: successful exit */
  577. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  578. /* > = 1,...,N: */
  579. /* > The QZ iteration failed. No eigenvectors have been */
  580. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  581. /* > should be correct for j=INFO+1,...,N. */
  582. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  583. /* > =N+2: error return from DTGEVC. */
  584. /* > \endverbatim */
  585. /* Authors: */
  586. /* ======== */
  587. /* > \author Univ. of Tennessee */
  588. /* > \author Univ. of California Berkeley */
  589. /* > \author Univ. of Colorado Denver */
  590. /* > \author NAG Ltd. */
  591. /* > \date January 2015 */
  592. /* > \ingroup doubleGEeigen */
  593. /* ===================================================================== */
  594. /* Subroutine */ int dggev3_(char *jobvl, char *jobvr, integer *n, doublereal
  595. *a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
  596. doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
  597. doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
  598. integer *info)
  599. {
  600. /* System generated locals */
  601. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  602. vr_offset, i__1, i__2;
  603. doublereal d__1, d__2, d__3, d__4;
  604. /* Local variables */
  605. doublereal anrm, bnrm;
  606. integer ierr, itau;
  607. doublereal temp;
  608. logical ilvl, ilvr;
  609. integer iwrk;
  610. extern logical lsame_(char *, char *);
  611. integer ileft, icols;
  612. extern /* Subroutine */ int dgghd3_(char *, char *, integer *, integer *,
  613. integer *, doublereal *, integer *, doublereal *, integer *,
  614. doublereal *, integer *, doublereal *, integer *, doublereal *,
  615. integer *, integer *);
  616. integer irows;
  617. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
  618. integer jc;
  619. extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *,
  620. integer *, doublereal *, doublereal *, integer *, doublereal *,
  621. integer *, integer *), dggbal_(char *, integer *,
  622. doublereal *, integer *, doublereal *, integer *, integer *,
  623. integer *, doublereal *, doublereal *, doublereal *, integer *);
  624. integer in;
  625. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  626. integer *, doublereal *, integer *, doublereal *);
  627. integer jr;
  628. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  629. doublereal *, doublereal *, integer *, integer *, doublereal *,
  630. integer *, integer *);
  631. logical ilascl, ilbscl;
  632. extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
  633. integer *, doublereal *, doublereal *, integer *, integer *),
  634. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  635. doublereal *, integer *), dlaset_(char *, integer *,
  636. integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
  637. *, integer *, doublereal *, integer *, doublereal *, integer *,
  638. doublereal *, integer *, integer *, integer *, doublereal *,
  639. integer *);
  640. logical ldumma[1];
  641. char chtemp[1];
  642. doublereal bignum;
  643. extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
  644. integer *, integer *, doublereal *, integer *, doublereal *,
  645. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  646. integer *, doublereal *, integer *, doublereal *, integer *,
  647. integer *), xerbla_(char *, integer *, ftnlen);
  648. integer ijobvl, iright, ijobvr;
  649. extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
  650. doublereal *, integer *, doublereal *, doublereal *, integer *,
  651. integer *);
  652. doublereal anrmto, bnrmto;
  653. extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
  654. integer *, doublereal *, integer *, doublereal *, doublereal *,
  655. integer *, doublereal *, integer *, integer *);
  656. doublereal smlnum;
  657. integer lwkopt;
  658. logical lquery;
  659. integer ihi, ilo;
  660. doublereal eps;
  661. logical ilv;
  662. /* -- LAPACK driver routine (version 3.6.0) -- */
  663. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  664. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  665. /* January 2015 */
  666. /* ===================================================================== */
  667. /* Decode the input arguments */
  668. /* Parameter adjustments */
  669. a_dim1 = *lda;
  670. a_offset = 1 + a_dim1 * 1;
  671. a -= a_offset;
  672. b_dim1 = *ldb;
  673. b_offset = 1 + b_dim1 * 1;
  674. b -= b_offset;
  675. --alphar;
  676. --alphai;
  677. --beta;
  678. vl_dim1 = *ldvl;
  679. vl_offset = 1 + vl_dim1 * 1;
  680. vl -= vl_offset;
  681. vr_dim1 = *ldvr;
  682. vr_offset = 1 + vr_dim1 * 1;
  683. vr -= vr_offset;
  684. --work;
  685. /* Function Body */
  686. if (lsame_(jobvl, "N")) {
  687. ijobvl = 1;
  688. ilvl = FALSE_;
  689. } else if (lsame_(jobvl, "V")) {
  690. ijobvl = 2;
  691. ilvl = TRUE_;
  692. } else {
  693. ijobvl = -1;
  694. ilvl = FALSE_;
  695. }
  696. if (lsame_(jobvr, "N")) {
  697. ijobvr = 1;
  698. ilvr = FALSE_;
  699. } else if (lsame_(jobvr, "V")) {
  700. ijobvr = 2;
  701. ilvr = TRUE_;
  702. } else {
  703. ijobvr = -1;
  704. ilvr = FALSE_;
  705. }
  706. ilv = ilvl || ilvr;
  707. /* Test the input arguments */
  708. *info = 0;
  709. lquery = *lwork == -1;
  710. if (ijobvl <= 0) {
  711. *info = -1;
  712. } else if (ijobvr <= 0) {
  713. *info = -2;
  714. } else if (*n < 0) {
  715. *info = -3;
  716. } else if (*lda < f2cmax(1,*n)) {
  717. *info = -5;
  718. } else if (*ldb < f2cmax(1,*n)) {
  719. *info = -7;
  720. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  721. *info = -12;
  722. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  723. *info = -14;
  724. } else /* if(complicated condition) */ {
  725. /* Computing MAX */
  726. i__1 = 1, i__2 = *n << 3;
  727. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  728. *info = -16;
  729. }
  730. }
  731. /* Compute workspace */
  732. if (*info == 0) {
  733. dgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  734. /* Computing MAX */
  735. i__1 = 1, i__2 = *n << 3, i__1 = f2cmax(i__1,i__2), i__2 = *n * 3 + (
  736. integer) work[1];
  737. lwkopt = f2cmax(i__1,i__2);
  738. dormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  739. lda, &work[1], &c_n1, &ierr);
  740. /* Computing MAX */
  741. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  742. lwkopt = f2cmax(i__1,i__2);
  743. if (ilvl) {
  744. dorgqr_(n, n, n, &vl[vl_offset], ldvl, &work[1], &work[1], &c_n1,
  745. &ierr);
  746. /* Computing MAX */
  747. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  748. lwkopt = f2cmax(i__1,i__2);
  749. }
  750. if (ilv) {
  751. dgghd3_(jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[b_offset]
  752. , ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[
  753. 1], &c_n1, &ierr);
  754. /* Computing MAX */
  755. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  756. lwkopt = f2cmax(i__1,i__2);
  757. dhgeqz_("S", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  758. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  759. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  760. ierr);
  761. /* Computing MAX */
  762. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  763. lwkopt = f2cmax(i__1,i__2);
  764. } else {
  765. dgghd3_("N", "N", n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  766. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1],
  767. &c_n1, &ierr);
  768. /* Computing MAX */
  769. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  770. lwkopt = f2cmax(i__1,i__2);
  771. dhgeqz_("E", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  772. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  773. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  774. ierr);
  775. /* Computing MAX */
  776. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  777. lwkopt = f2cmax(i__1,i__2);
  778. }
  779. work[1] = (doublereal) lwkopt;
  780. }
  781. if (*info != 0) {
  782. i__1 = -(*info);
  783. xerbla_("DGGEV3 ", &i__1, (ftnlen)6);
  784. return 0;
  785. } else if (lquery) {
  786. return 0;
  787. }
  788. /* Quick return if possible */
  789. if (*n == 0) {
  790. return 0;
  791. }
  792. /* Get machine constants */
  793. eps = dlamch_("P");
  794. smlnum = dlamch_("S");
  795. bignum = 1. / smlnum;
  796. dlabad_(&smlnum, &bignum);
  797. smlnum = sqrt(smlnum) / eps;
  798. bignum = 1. / smlnum;
  799. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  800. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  801. ilascl = FALSE_;
  802. if (anrm > 0. && anrm < smlnum) {
  803. anrmto = smlnum;
  804. ilascl = TRUE_;
  805. } else if (anrm > bignum) {
  806. anrmto = bignum;
  807. ilascl = TRUE_;
  808. }
  809. if (ilascl) {
  810. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  811. ierr);
  812. }
  813. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  814. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  815. ilbscl = FALSE_;
  816. if (bnrm > 0. && bnrm < smlnum) {
  817. bnrmto = smlnum;
  818. ilbscl = TRUE_;
  819. } else if (bnrm > bignum) {
  820. bnrmto = bignum;
  821. ilbscl = TRUE_;
  822. }
  823. if (ilbscl) {
  824. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  825. ierr);
  826. }
  827. /* Permute the matrices A, B to isolate eigenvalues if possible */
  828. ileft = 1;
  829. iright = *n + 1;
  830. iwrk = iright + *n;
  831. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  832. ileft], &work[iright], &work[iwrk], &ierr);
  833. /* Reduce B to triangular form (QR decomposition of B) */
  834. irows = ihi + 1 - ilo;
  835. if (ilv) {
  836. icols = *n + 1 - ilo;
  837. } else {
  838. icols = irows;
  839. }
  840. itau = iwrk;
  841. iwrk = itau + irows;
  842. i__1 = *lwork + 1 - iwrk;
  843. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  844. iwrk], &i__1, &ierr);
  845. /* Apply the orthogonal transformation to matrix A */
  846. i__1 = *lwork + 1 - iwrk;
  847. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  848. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  849. ierr);
  850. /* Initialize VL */
  851. if (ilvl) {
  852. dlaset_("Full", n, n, &c_b38, &c_b39, &vl[vl_offset], ldvl)
  853. ;
  854. if (irows > 1) {
  855. i__1 = irows - 1;
  856. i__2 = irows - 1;
  857. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  858. ilo + 1 + ilo * vl_dim1], ldvl);
  859. }
  860. i__1 = *lwork + 1 - iwrk;
  861. dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  862. itau], &work[iwrk], &i__1, &ierr);
  863. }
  864. /* Initialize VR */
  865. if (ilvr) {
  866. dlaset_("Full", n, n, &c_b38, &c_b39, &vr[vr_offset], ldvr)
  867. ;
  868. }
  869. /* Reduce to generalized Hessenberg form */
  870. if (ilv) {
  871. /* Eigenvectors requested -- work on whole matrix. */
  872. i__1 = *lwork + 1 - iwrk;
  873. dgghd3_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  874. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk],
  875. &i__1, &ierr);
  876. } else {
  877. i__1 = *lwork + 1 - iwrk;
  878. dgghd3_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  879. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  880. vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  881. }
  882. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  883. /* Schur forms and Schur vectors) */
  884. iwrk = itau;
  885. if (ilv) {
  886. *(unsigned char *)chtemp = 'S';
  887. } else {
  888. *(unsigned char *)chtemp = 'E';
  889. }
  890. i__1 = *lwork + 1 - iwrk;
  891. dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  892. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  893. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  894. if (ierr != 0) {
  895. if (ierr > 0 && ierr <= *n) {
  896. *info = ierr;
  897. } else if (ierr > *n && ierr <= *n << 1) {
  898. *info = ierr - *n;
  899. } else {
  900. *info = *n + 1;
  901. }
  902. goto L110;
  903. }
  904. /* Compute Eigenvectors */
  905. if (ilv) {
  906. if (ilvl) {
  907. if (ilvr) {
  908. *(unsigned char *)chtemp = 'B';
  909. } else {
  910. *(unsigned char *)chtemp = 'L';
  911. }
  912. } else {
  913. *(unsigned char *)chtemp = 'R';
  914. }
  915. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  916. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  917. iwrk], &ierr);
  918. if (ierr != 0) {
  919. *info = *n + 2;
  920. goto L110;
  921. }
  922. /* Undo balancing on VL and VR and normalization */
  923. if (ilvl) {
  924. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  925. vl[vl_offset], ldvl, &ierr);
  926. i__1 = *n;
  927. for (jc = 1; jc <= i__1; ++jc) {
  928. if (alphai[jc] < 0.) {
  929. goto L50;
  930. }
  931. temp = 0.;
  932. if (alphai[jc] == 0.) {
  933. i__2 = *n;
  934. for (jr = 1; jr <= i__2; ++jr) {
  935. /* Computing MAX */
  936. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
  937. abs(d__1));
  938. temp = f2cmax(d__2,d__3);
  939. /* L10: */
  940. }
  941. } else {
  942. i__2 = *n;
  943. for (jr = 1; jr <= i__2; ++jr) {
  944. /* Computing MAX */
  945. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
  946. abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
  947. vl_dim1], abs(d__2));
  948. temp = f2cmax(d__3,d__4);
  949. /* L20: */
  950. }
  951. }
  952. if (temp < smlnum) {
  953. goto L50;
  954. }
  955. temp = 1. / temp;
  956. if (alphai[jc] == 0.) {
  957. i__2 = *n;
  958. for (jr = 1; jr <= i__2; ++jr) {
  959. vl[jr + jc * vl_dim1] *= temp;
  960. /* L30: */
  961. }
  962. } else {
  963. i__2 = *n;
  964. for (jr = 1; jr <= i__2; ++jr) {
  965. vl[jr + jc * vl_dim1] *= temp;
  966. vl[jr + (jc + 1) * vl_dim1] *= temp;
  967. /* L40: */
  968. }
  969. }
  970. L50:
  971. ;
  972. }
  973. }
  974. if (ilvr) {
  975. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  976. vr[vr_offset], ldvr, &ierr);
  977. i__1 = *n;
  978. for (jc = 1; jc <= i__1; ++jc) {
  979. if (alphai[jc] < 0.) {
  980. goto L100;
  981. }
  982. temp = 0.;
  983. if (alphai[jc] == 0.) {
  984. i__2 = *n;
  985. for (jr = 1; jr <= i__2; ++jr) {
  986. /* Computing MAX */
  987. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
  988. abs(d__1));
  989. temp = f2cmax(d__2,d__3);
  990. /* L60: */
  991. }
  992. } else {
  993. i__2 = *n;
  994. for (jr = 1; jr <= i__2; ++jr) {
  995. /* Computing MAX */
  996. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
  997. abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
  998. vr_dim1], abs(d__2));
  999. temp = f2cmax(d__3,d__4);
  1000. /* L70: */
  1001. }
  1002. }
  1003. if (temp < smlnum) {
  1004. goto L100;
  1005. }
  1006. temp = 1. / temp;
  1007. if (alphai[jc] == 0.) {
  1008. i__2 = *n;
  1009. for (jr = 1; jr <= i__2; ++jr) {
  1010. vr[jr + jc * vr_dim1] *= temp;
  1011. /* L80: */
  1012. }
  1013. } else {
  1014. i__2 = *n;
  1015. for (jr = 1; jr <= i__2; ++jr) {
  1016. vr[jr + jc * vr_dim1] *= temp;
  1017. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1018. /* L90: */
  1019. }
  1020. }
  1021. L100:
  1022. ;
  1023. }
  1024. }
  1025. /* End of eigenvector calculation */
  1026. }
  1027. /* Undo scaling if necessary */
  1028. L110:
  1029. if (ilascl) {
  1030. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1031. ierr);
  1032. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1033. ierr);
  1034. }
  1035. if (ilbscl) {
  1036. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1037. ierr);
  1038. }
  1039. work[1] = (doublereal) lwkopt;
  1040. return 0;
  1041. /* End of DGGEV3 */
  1042. } /* dggev3_ */