|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952 |
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static integer c_n2 = -2;
- static doublereal c_b23 = 0.;
- static integer c__0 = 0;
-
- /* > \brief \b DGETSLS */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, */
- /* $ WORK, LWORK, INFO ) */
-
- /* CHARACTER TRANS */
- /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DGETSLS solves overdetermined or underdetermined real linear systems */
- /* > involving an M-by-N matrix A, using a tall skinny QR or short wide LQ */
- /* > factorization of A. It is assumed that A has full rank. */
- /* > */
- /* > */
- /* > */
- /* > The following options are provided: */
- /* > */
- /* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
- /* > an overdetermined system, i.e., solve the least squares problem */
- /* > minimize || B - A*X ||. */
- /* > */
- /* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
- /* > an underdetermined system A * X = B. */
- /* > */
- /* > 3. If TRANS = 'T' and m >= n: find the minimum norm solution of */
- /* > an undetermined system A**T * X = B. */
- /* > */
- /* > 4. If TRANS = 'T' and m < n: find the least squares solution of */
- /* > an overdetermined system, i.e., solve the least squares problem */
- /* > minimize || B - A**T * X ||. */
- /* > */
- /* > Several right hand side vectors b and solution vectors x can be */
- /* > handled in a single call; they are stored as the columns of the */
- /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* > matrix X. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': the linear system involves A; */
- /* > = 'T': the linear system involves A**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of */
- /* > columns of the matrices B and X. NRHS >=0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, */
- /* > A is overwritten by details of its QR or LQ */
- /* > factorization as returned by DGEQR or DGELQ. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* > On entry, the matrix B of right hand side vectors, stored */
- /* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
- /* > if TRANS = 'T'. */
- /* > On exit, if INFO = 0, B is overwritten by the solution */
- /* > vectors, stored columnwise: */
- /* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
- /* > squares solution vectors. */
- /* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
- /* > minimum norm solution vectors; */
- /* > if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
- /* > minimum norm solution vectors; */
- /* > if TRANS = 'T' and m < n, rows 1 to M of B contain the */
- /* > least squares solution vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
- /* > or optimal, if query was assumed) LWORK. */
- /* > See LWORK for details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > If LWORK = -1 or -2, then a workspace query is assumed. */
- /* > If LWORK = -1, the routine calculates optimal size of WORK for the */
- /* > optimal performance and returns this value in WORK(1). */
- /* > If LWORK = -2, the routine calculates minimal size of WORK and */
- /* > returns this value in WORK(1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, the i-th diagonal element of the */
- /* > triangular factor of A is zero, so that A does not have */
- /* > full rank; the least squares solution could not be */
- /* > computed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup doubleGEsolve */
-
- /* ===================================================================== */
- /* Subroutine */ int dgetsls_(char *trans, integer *m, integer *n, integer *
- nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
-
- /* Local variables */
- doublereal anrm, bnrm;
- logical tran;
- integer brow, tszm, tszo, info2, i__, j, iascl, ibscl;
- extern /* Subroutine */ int dgelq_(integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgeqr_(integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- integer minmn, maxmn;
- doublereal workq[1];
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- doublereal tq[5];
- extern /* Subroutine */ int dgemlq_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal
- *, doublereal *, doublereal *, integer *), xerbla_(char *,
- integer *, ftnlen), dgemqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- integer scllen;
- doublereal bignum, smlnum;
- integer wsizem, wsizeo;
- logical lquery;
- extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- integer lw1, lw2, mnk, lwm, lwo;
-
-
- /* -- LAPACK driver routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- minmn = f2cmin(*m,*n);
- maxmn = f2cmax(*m,*n);
- mnk = f2cmax(minmn,*nrhs);
- tran = lsame_(trans, "T");
-
- lquery = *lwork == -1 || *lwork == -2;
- if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -6;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = f2cmax(1,*m);
- if (*ldb < f2cmax(i__1,*n)) {
- *info = -8;
- }
- }
-
- if (*info == 0) {
-
- /* Determine the block size and minimum LWORK */
-
- if (*m >= *n) {
- dgeqr_(m, n, &a[a_offset], lda, tq, &c_n1, workq, &c_n1, &info2);
- tszo = (integer) tq[0];
- lwo = (integer) workq[0];
- dgemqr_("L", trans, m, nrhs, n, &a[a_offset], lda, tq, &tszo, &b[
- b_offset], ldb, workq, &c_n1, &info2);
- /* Computing MAX */
- i__1 = lwo, i__2 = (integer) workq[0];
- lwo = f2cmax(i__1,i__2);
- dgeqr_(m, n, &a[a_offset], lda, tq, &c_n2, workq, &c_n2, &info2);
- tszm = (integer) tq[0];
- lwm = (integer) workq[0];
- dgemqr_("L", trans, m, nrhs, n, &a[a_offset], lda, tq, &tszm, &b[
- b_offset], ldb, workq, &c_n1, &info2);
- /* Computing MAX */
- i__1 = lwm, i__2 = (integer) workq[0];
- lwm = f2cmax(i__1,i__2);
- wsizeo = tszo + lwo;
- wsizem = tszm + lwm;
- } else {
- dgelq_(m, n, &a[a_offset], lda, tq, &c_n1, workq, &c_n1, &info2);
- tszo = (integer) tq[0];
- lwo = (integer) workq[0];
- dgemlq_("L", trans, n, nrhs, m, &a[a_offset], lda, tq, &tszo, &b[
- b_offset], ldb, workq, &c_n1, &info2);
- /* Computing MAX */
- i__1 = lwo, i__2 = (integer) workq[0];
- lwo = f2cmax(i__1,i__2);
- dgelq_(m, n, &a[a_offset], lda, tq, &c_n2, workq, &c_n2, &info2);
- tszm = (integer) tq[0];
- lwm = (integer) workq[0];
- dgemlq_("L", trans, n, nrhs, m, &a[a_offset], lda, tq, &tszm, &b[
- b_offset], ldb, workq, &c_n1, &info2);
- /* Computing MAX */
- i__1 = lwm, i__2 = (integer) workq[0];
- lwm = f2cmax(i__1,i__2);
- wsizeo = tszo + lwo;
- wsizem = tszm + lwm;
- }
-
- if (*lwork < wsizem && ! lquery) {
- *info = -10;
- }
-
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGETSLS", &i__1, (ftnlen)7);
- work[1] = (doublereal) wsizeo;
- return 0;
- }
- if (lquery) {
- if (*lwork == -1) {
- work[1] = (real) wsizeo;
- }
- if (*lwork == -2) {
- work[1] = (real) wsizem;
- }
- return 0;
- }
- if (*lwork < wsizeo) {
- lw1 = tszm;
- lw2 = lwm;
- } else {
- lw1 = tszo;
- lw2 = lwo;
- }
-
- /* Quick return if possible */
-
- /* Computing MIN */
- i__1 = f2cmin(*m,*n);
- if (f2cmin(i__1,*nrhs) == 0) {
- i__1 = f2cmax(*m,*n);
- dlaset_("FULL", &i__1, nrhs, &c_b23, &c_b23, &b[b_offset], ldb);
- return 0;
- }
-
- /* Get machine parameters */
-
- smlnum = dlamch_("S") / dlamch_("P");
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
-
- /* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
- iascl = 0;
- if (anrm > 0. && anrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.) {
-
- /* Matrix all zero. Return zero solution. */
-
- dlaset_("F", &maxmn, nrhs, &c_b23, &c_b23, &b[b_offset], ldb);
- goto L50;
- }
-
- brow = *m;
- if (tran) {
- brow = *n;
- }
- bnrm = dlange_("M", &brow, nrhs, &b[b_offset], ldb, &work[1]);
- ibscl = 0;
- if (bnrm > 0. && bnrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
- ldb, info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- dlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
- ldb, info);
- ibscl = 2;
- }
-
- if (*m >= *n) {
-
- /* compute QR factorization of A */
-
- dgeqr_(m, n, &a[a_offset], lda, &work[lw2 + 1], &lw1, &work[1], &lw2,
- info);
- if (! tran) {
-
- /* Least-Squares Problem f2cmin || A * X - B || */
-
- /* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
-
- dgemqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[lw2 + 1], &
- lw1, &b[b_offset], ldb, &work[1], &lw2, info);
-
- /* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
-
- dtrtrs_("U", "N", "N", n, nrhs, &a[a_offset], lda, &b[b_offset],
- ldb, info);
- if (*info > 0) {
- return 0;
- }
- scllen = *n;
- } else {
-
- /* Overdetermined system of equations A**T * X = B */
-
- /* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
-
- dtrtrs_("U", "T", "N", n, nrhs, &a[a_offset], lda, &b[b_offset],
- ldb, info);
-
- if (*info > 0) {
- return 0;
- }
-
- /* B(N+1:M,1:NRHS) = ZERO */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = *n + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
- /* L10: */
- }
- /* L20: */
- }
-
- /* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
-
- dgemqr_("L", "N", m, nrhs, n, &a[a_offset], lda, &work[lw2 + 1], &
- lw1, &b[b_offset], ldb, &work[1], &lw2, info);
-
- scllen = *m;
-
- }
-
- } else {
-
- /* Compute LQ factorization of A */
-
- dgelq_(m, n, &a[a_offset], lda, &work[lw2 + 1], &lw1, &work[1], &lw2,
- info);
-
- /* workspace at least M, optimally M*NB. */
-
- if (! tran) {
-
- /* underdetermined system of equations A * X = B */
-
- /* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
-
- dtrtrs_("L", "N", "N", m, nrhs, &a[a_offset], lda, &b[b_offset],
- ldb, info);
-
- if (*info > 0) {
- return 0;
- }
-
- /* B(M+1:N,1:NRHS) = 0 */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = *m + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
- /* L30: */
- }
- /* L40: */
- }
-
- /* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS) */
-
- dgemlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[lw2 + 1], &
- lw1, &b[b_offset], ldb, &work[1], &lw2, info);
-
- /* workspace at least NRHS, optimally NRHS*NB */
-
- scllen = *n;
-
- } else {
-
- /* overdetermined system f2cmin || A**T * X - B || */
-
- /* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
-
- dgemlq_("L", "N", n, nrhs, m, &a[a_offset], lda, &work[lw2 + 1], &
- lw1, &b[b_offset], ldb, &work[1], &lw2, info);
-
- /* workspace at least NRHS, optimally NRHS*NB */
-
- /* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
-
- dtrtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset],
- lda, &b[b_offset], ldb, info);
-
- if (*info > 0) {
- return 0;
- }
-
- scllen = *m;
-
- }
-
- }
-
- /* Undo scaling */
-
- if (iascl == 1) {
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- } else if (iascl == 2) {
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- }
- if (ibscl == 1) {
- dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- } else if (ibscl == 2) {
- dlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- }
-
- L50:
- work[1] = (doublereal) (tszo + lwo);
- return 0;
-
- /* End of DGETSLS */
-
- } /* dgetsls_ */
-
|