You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvdx.c 42 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__6 = 6;
  381. static integer c__0 = 0;
  382. static integer c__2 = 2;
  383. static integer c__1 = 1;
  384. static integer c_n1 = -1;
  385. static doublereal c_b109 = 0.;
  386. /* > \brief <b> DGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download DGESVDX + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdx
  393. .f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdx
  396. .f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdx
  399. .f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE DGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  405. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  406. /* $ LWORK, IWORK, INFO ) */
  407. /* CHARACTER JOBU, JOBVT, RANGE */
  408. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  409. /* DOUBLE PRECISION VL, VU */
  410. /* INTEGER IWORK( * ) */
  411. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  412. /* $ VT( LDVT, * ), WORK( * ) */
  413. /* > \par Purpose: */
  414. /* ============= */
  415. /* > */
  416. /* > \verbatim */
  417. /* > */
  418. /* > DGESVDX computes the singular value decomposition (SVD) of a real */
  419. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  420. /* > vectors. The SVD is written */
  421. /* > */
  422. /* > A = U * SIGMA * transpose(V) */
  423. /* > */
  424. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  425. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  426. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  427. /* > are the singular values of A; they are real and non-negative, and */
  428. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  429. /* > U and V are the left and right singular vectors of A. */
  430. /* > */
  431. /* > DGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  432. /* > allows for the computation of a subset of singular values and */
  433. /* > vectors. See DBDSVDX for details. */
  434. /* > */
  435. /* > Note that the routine returns V**T, not V. */
  436. /* > \endverbatim */
  437. /* Arguments: */
  438. /* ========== */
  439. /* > \param[in] JOBU */
  440. /* > \verbatim */
  441. /* > JOBU is CHARACTER*1 */
  442. /* > Specifies options for computing all or part of the matrix U: */
  443. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  444. /* > vectors) or as specified by RANGE are returned in */
  445. /* > the array U; */
  446. /* > = 'N': no columns of U (no left singular vectors) are */
  447. /* > computed. */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] JOBVT */
  451. /* > \verbatim */
  452. /* > JOBVT is CHARACTER*1 */
  453. /* > Specifies options for computing all or part of the matrix */
  454. /* > V**T: */
  455. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  456. /* > vectors) or as specified by RANGE are returned in */
  457. /* > the array VT; */
  458. /* > = 'N': no rows of V**T (no right singular vectors) are */
  459. /* > computed. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] RANGE */
  463. /* > \verbatim */
  464. /* > RANGE is CHARACTER*1 */
  465. /* > = 'A': all singular values will be found. */
  466. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  467. /* > will be found. */
  468. /* > = 'I': the IL-th through IU-th singular values will be found. */
  469. /* > \endverbatim */
  470. /* > */
  471. /* > \param[in] M */
  472. /* > \verbatim */
  473. /* > M is INTEGER */
  474. /* > The number of rows of the input matrix A. M >= 0. */
  475. /* > \endverbatim */
  476. /* > */
  477. /* > \param[in] N */
  478. /* > \verbatim */
  479. /* > N is INTEGER */
  480. /* > The number of columns of the input matrix A. N >= 0. */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[in,out] A */
  484. /* > \verbatim */
  485. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  486. /* > On entry, the M-by-N matrix A. */
  487. /* > On exit, the contents of A are destroyed. */
  488. /* > \endverbatim */
  489. /* > */
  490. /* > \param[in] LDA */
  491. /* > \verbatim */
  492. /* > LDA is INTEGER */
  493. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  494. /* > \endverbatim */
  495. /* > */
  496. /* > \param[in] VL */
  497. /* > \verbatim */
  498. /* > VL is DOUBLE PRECISION */
  499. /* > If RANGE='V', the lower bound of the interval to */
  500. /* > be searched for singular values. VU > VL. */
  501. /* > Not referenced if RANGE = 'A' or 'I'. */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[in] VU */
  505. /* > \verbatim */
  506. /* > VU is DOUBLE PRECISION */
  507. /* > If RANGE='V', the upper bound of the interval to */
  508. /* > be searched for singular values. VU > VL. */
  509. /* > Not referenced if RANGE = 'A' or 'I'. */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[in] IL */
  513. /* > \verbatim */
  514. /* > IL is INTEGER */
  515. /* > If RANGE='I', the index of the */
  516. /* > smallest singular value to be returned. */
  517. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  518. /* > Not referenced if RANGE = 'A' or 'V'. */
  519. /* > \endverbatim */
  520. /* > */
  521. /* > \param[in] IU */
  522. /* > \verbatim */
  523. /* > IU is INTEGER */
  524. /* > If RANGE='I', the index of the */
  525. /* > largest singular value to be returned. */
  526. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  527. /* > Not referenced if RANGE = 'A' or 'V'. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[out] NS */
  531. /* > \verbatim */
  532. /* > NS is INTEGER */
  533. /* > The total number of singular values found, */
  534. /* > 0 <= NS <= f2cmin(M,N). */
  535. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[out] S */
  539. /* > \verbatim */
  540. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  541. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[out] U */
  545. /* > \verbatim */
  546. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  547. /* > If JOBU = 'V', U contains columns of U (the left singular */
  548. /* > vectors, stored columnwise) as specified by RANGE; if */
  549. /* > JOBU = 'N', U is not referenced. */
  550. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  551. /* > the exact value of NS is not known in advance and an upper */
  552. /* > bound must be used. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] LDU */
  556. /* > \verbatim */
  557. /* > LDU is INTEGER */
  558. /* > The leading dimension of the array U. LDU >= 1; if */
  559. /* > JOBU = 'V', LDU >= M. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[out] VT */
  563. /* > \verbatim */
  564. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  565. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  566. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  567. /* > VT is not referenced. */
  568. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  569. /* > the exact value of NS is not known in advance and an upper */
  570. /* > bound must be used. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] LDVT */
  574. /* > \verbatim */
  575. /* > LDVT is INTEGER */
  576. /* > The leading dimension of the array VT. LDVT >= 1; if */
  577. /* > JOBVT = 'V', LDVT >= NS (see above). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] WORK */
  581. /* > \verbatim */
  582. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  583. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LWORK */
  587. /* > \verbatim */
  588. /* > LWORK is INTEGER */
  589. /* > The dimension of the array WORK. */
  590. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  591. /* > comments inside the code): */
  592. /* > - PATH 1 (M much larger than N) */
  593. /* > - PATH 1t (N much larger than M) */
  594. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  595. /* > For good performance, LWORK should generally be larger. */
  596. /* > */
  597. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  598. /* > only calculates the optimal size of the WORK array, returns */
  599. /* > this value as the first entry of the WORK array, and no error */
  600. /* > message related to LWORK is issued by XERBLA. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] IWORK */
  604. /* > \verbatim */
  605. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  606. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  607. /* > then IWORK contains the indices of the eigenvectors that failed */
  608. /* > to converge in DBDSVDX/DSTEVX. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] INFO */
  612. /* > \verbatim */
  613. /* > INFO is INTEGER */
  614. /* > = 0: successful exit */
  615. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  616. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  617. /* > in DBDSVDX/DSTEVX. */
  618. /* > if INFO = N*2 + 1, an internal error occurred in */
  619. /* > DBDSVDX */
  620. /* > \endverbatim */
  621. /* Authors: */
  622. /* ======== */
  623. /* > \author Univ. of Tennessee */
  624. /* > \author Univ. of California Berkeley */
  625. /* > \author Univ. of Colorado Denver */
  626. /* > \author NAG Ltd. */
  627. /* > \date June 2016 */
  628. /* > \ingroup doubleGEsing */
  629. /* ===================================================================== */
  630. /* Subroutine */ int dgesvdx_(char *jobu, char *jobvt, char *range, integer *
  631. m, integer *n, doublereal *a, integer *lda, doublereal *vl,
  632. doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s,
  633. doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
  634. doublereal *work, integer *lwork, integer *iwork, integer *info)
  635. {
  636. /* System generated locals */
  637. address a__1[2];
  638. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  639. i__2, i__3;
  640. char ch__1[2];
  641. /* Local variables */
  642. integer iscl;
  643. logical alls, inds;
  644. integer ilqf;
  645. doublereal anrm;
  646. integer ierr, iqrf, itau;
  647. char jobz[1];
  648. logical vals;
  649. integer i__, j;
  650. extern logical lsame_(char *, char *);
  651. integer iltgk, itemp, minmn;
  652. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  653. doublereal *, integer *);
  654. integer itaup, itauq, iutgk, itgkz, mnthr;
  655. logical wantu;
  656. integer id, ie;
  657. extern /* Subroutine */ int dgebrd_(integer *, integer *, doublereal *,
  658. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  659. doublereal *, integer *, integer *);
  660. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  661. integer *, doublereal *, integer *, doublereal *);
  662. extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
  663. integer *, doublereal *, doublereal *, integer *, integer *),
  664. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  665. integer *, integer *, doublereal *, integer *, integer *),
  666. dgeqrf_(integer *, integer *, doublereal *, integer *,
  667. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  668. integer *, integer *, doublereal *, integer *, doublereal *,
  669. integer *), dlaset_(char *, integer *, integer *,
  670. doublereal *, doublereal *, doublereal *, integer *),
  671. xerbla_(char *, integer *, ftnlen);
  672. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  673. integer *, integer *, ftnlen, ftnlen);
  674. doublereal bignum, abstol;
  675. extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
  676. integer *, integer *, doublereal *, integer *, doublereal *,
  677. doublereal *, integer *, doublereal *, integer *, integer *);
  678. char rngtgk[1];
  679. extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
  680. integer *, doublereal *, integer *, doublereal *, doublereal *,
  681. integer *, doublereal *, integer *, integer *),
  682. dormqr_(char *, char *, integer *, integer *, integer *,
  683. doublereal *, integer *, doublereal *, doublereal *, integer *,
  684. doublereal *, integer *, integer *);
  685. integer minwrk, maxwrk;
  686. doublereal smlnum;
  687. logical lquery, wantvt;
  688. doublereal dum[1], eps;
  689. extern /* Subroutine */ int dbdsvdx_(char *, char *, char *, integer *,
  690. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  691. integer *, integer *, doublereal *, doublereal *, integer *,
  692. doublereal *, integer *, integer *);
  693. /* -- LAPACK driver routine (version 3.8.0) -- */
  694. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  695. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  696. /* June 2016 */
  697. /* ===================================================================== */
  698. /* Test the input arguments. */
  699. /* Parameter adjustments */
  700. a_dim1 = *lda;
  701. a_offset = 1 + a_dim1 * 1;
  702. a -= a_offset;
  703. --s;
  704. u_dim1 = *ldu;
  705. u_offset = 1 + u_dim1 * 1;
  706. u -= u_offset;
  707. vt_dim1 = *ldvt;
  708. vt_offset = 1 + vt_dim1 * 1;
  709. vt -= vt_offset;
  710. --work;
  711. --iwork;
  712. /* Function Body */
  713. *ns = 0;
  714. *info = 0;
  715. abstol = dlamch_("S") * 2;
  716. lquery = *lwork == -1;
  717. minmn = f2cmin(*m,*n);
  718. wantu = lsame_(jobu, "V");
  719. wantvt = lsame_(jobvt, "V");
  720. if (wantu || wantvt) {
  721. *(unsigned char *)jobz = 'V';
  722. } else {
  723. *(unsigned char *)jobz = 'N';
  724. }
  725. alls = lsame_(range, "A");
  726. vals = lsame_(range, "V");
  727. inds = lsame_(range, "I");
  728. *info = 0;
  729. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  730. *info = -1;
  731. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  732. "N")) {
  733. *info = -2;
  734. } else if (! (alls || vals || inds)) {
  735. *info = -3;
  736. } else if (*m < 0) {
  737. *info = -4;
  738. } else if (*n < 0) {
  739. *info = -5;
  740. } else if (*m > *lda) {
  741. *info = -7;
  742. } else if (minmn > 0) {
  743. if (vals) {
  744. if (*vl < 0.) {
  745. *info = -8;
  746. } else if (*vu <= *vl) {
  747. *info = -9;
  748. }
  749. } else if (inds) {
  750. if (*il < 1 || *il > f2cmax(1,minmn)) {
  751. *info = -10;
  752. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  753. *info = -11;
  754. }
  755. }
  756. if (*info == 0) {
  757. if (wantu && *ldu < *m) {
  758. *info = -15;
  759. } else if (wantvt) {
  760. if (inds) {
  761. if (*ldvt < *iu - *il + 1) {
  762. *info = -17;
  763. }
  764. } else if (*ldvt < minmn) {
  765. *info = -17;
  766. }
  767. }
  768. }
  769. }
  770. /* Compute workspace */
  771. /* (Note: Comments in the code beginning "Workspace:" describe the */
  772. /* minimal amount of workspace needed at that point in the code, */
  773. /* as well as the preferred amount for good performance. */
  774. /* NB refers to the optimal block size for the immediately */
  775. /* following subroutine, as returned by ILAENV.) */
  776. if (*info == 0) {
  777. minwrk = 1;
  778. maxwrk = 1;
  779. if (minmn > 0) {
  780. if (*m >= *n) {
  781. /* Writing concatenation */
  782. i__1[0] = 1, a__1[0] = jobu;
  783. i__1[1] = 1, a__1[1] = jobvt;
  784. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  785. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  786. ftnlen)6, (ftnlen)2);
  787. if (*m >= mnthr) {
  788. /* Path 1 (M much larger than N) */
  789. maxwrk = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  790. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  791. /* Computing MAX */
  792. i__2 = maxwrk, i__3 = *n * (*n + 5) + (*n << 1) * ilaenv_(
  793. &c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
  794. 6, (ftnlen)1);
  795. maxwrk = f2cmax(i__2,i__3);
  796. if (wantu) {
  797. /* Computing MAX */
  798. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  799. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  800. c_n1, (ftnlen)6, (ftnlen)1);
  801. maxwrk = f2cmax(i__2,i__3);
  802. }
  803. if (wantvt) {
  804. /* Computing MAX */
  805. i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
  806. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  807. c_n1, (ftnlen)6, (ftnlen)1);
  808. maxwrk = f2cmax(i__2,i__3);
  809. }
  810. minwrk = *n * (*n * 3 + 20);
  811. } else {
  812. /* Path 2 (M at least N, but not much larger) */
  813. maxwrk = (*n << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  814. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  815. if (wantu) {
  816. /* Computing MAX */
  817. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  818. ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
  819. c_n1, (ftnlen)6, (ftnlen)1);
  820. maxwrk = f2cmax(i__2,i__3);
  821. }
  822. if (wantvt) {
  823. /* Computing MAX */
  824. i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
  825. ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
  826. c_n1, (ftnlen)6, (ftnlen)1);
  827. maxwrk = f2cmax(i__2,i__3);
  828. }
  829. /* Computing MAX */
  830. i__2 = *n * ((*n << 1) + 19), i__3 = (*n << 2) + *m;
  831. minwrk = f2cmax(i__2,i__3);
  832. }
  833. } else {
  834. /* Writing concatenation */
  835. i__1[0] = 1, a__1[0] = jobu;
  836. i__1[1] = 1, a__1[1] = jobvt;
  837. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  838. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  839. ftnlen)6, (ftnlen)2);
  840. if (*n >= mnthr) {
  841. /* Path 1t (N much larger than M) */
  842. maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
  843. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  844. /* Computing MAX */
  845. i__2 = maxwrk, i__3 = *m * (*m + 5) + (*m << 1) * ilaenv_(
  846. &c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
  847. 6, (ftnlen)1);
  848. maxwrk = f2cmax(i__2,i__3);
  849. if (wantu) {
  850. /* Computing MAX */
  851. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  852. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  853. c_n1, (ftnlen)6, (ftnlen)1);
  854. maxwrk = f2cmax(i__2,i__3);
  855. }
  856. if (wantvt) {
  857. /* Computing MAX */
  858. i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
  859. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  860. c_n1, (ftnlen)6, (ftnlen)1);
  861. maxwrk = f2cmax(i__2,i__3);
  862. }
  863. minwrk = *m * (*m * 3 + 20);
  864. } else {
  865. /* Path 2t (N at least M, but not much larger) */
  866. maxwrk = (*m << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
  867. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  868. if (wantu) {
  869. /* Computing MAX */
  870. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  871. ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
  872. c_n1, (ftnlen)6, (ftnlen)1);
  873. maxwrk = f2cmax(i__2,i__3);
  874. }
  875. if (wantvt) {
  876. /* Computing MAX */
  877. i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
  878. ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
  879. c_n1, (ftnlen)6, (ftnlen)1);
  880. maxwrk = f2cmax(i__2,i__3);
  881. }
  882. /* Computing MAX */
  883. i__2 = *m * ((*m << 1) + 19), i__3 = (*m << 2) + *n;
  884. minwrk = f2cmax(i__2,i__3);
  885. }
  886. }
  887. }
  888. maxwrk = f2cmax(maxwrk,minwrk);
  889. work[1] = (doublereal) maxwrk;
  890. if (*lwork < minwrk && ! lquery) {
  891. *info = -19;
  892. }
  893. }
  894. if (*info != 0) {
  895. i__2 = -(*info);
  896. xerbla_("DGESVDX", &i__2, (ftnlen)7);
  897. return 0;
  898. } else if (lquery) {
  899. return 0;
  900. }
  901. /* Quick return if possible */
  902. if (*m == 0 || *n == 0) {
  903. return 0;
  904. }
  905. /* Set singular values indices accord to RANGE. */
  906. if (alls) {
  907. *(unsigned char *)rngtgk = 'I';
  908. iltgk = 1;
  909. iutgk = f2cmin(*m,*n);
  910. } else if (inds) {
  911. *(unsigned char *)rngtgk = 'I';
  912. iltgk = *il;
  913. iutgk = *iu;
  914. } else {
  915. *(unsigned char *)rngtgk = 'V';
  916. iltgk = 0;
  917. iutgk = 0;
  918. }
  919. /* Get machine constants */
  920. eps = dlamch_("P");
  921. smlnum = sqrt(dlamch_("S")) / eps;
  922. bignum = 1. / smlnum;
  923. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  924. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  925. iscl = 0;
  926. if (anrm > 0. && anrm < smlnum) {
  927. iscl = 1;
  928. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  929. info);
  930. } else if (anrm > bignum) {
  931. iscl = 1;
  932. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  933. info);
  934. }
  935. if (*m >= *n) {
  936. /* A has at least as many rows as columns. If A has sufficiently */
  937. /* more rows than columns, first reduce A using the QR */
  938. /* decomposition. */
  939. if (*m >= mnthr) {
  940. /* Path 1 (M much larger than N): */
  941. /* A = Q * R = Q * ( QB * B * PB**T ) */
  942. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  943. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  944. /* Compute A=Q*R */
  945. /* (Workspace: need 2*N, prefer N+N*NB) */
  946. itau = 1;
  947. itemp = itau + *n;
  948. i__2 = *lwork - itemp + 1;
  949. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  950. info);
  951. /* Copy R into WORK and bidiagonalize it: */
  952. /* (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB) */
  953. iqrf = itemp;
  954. id = iqrf + *n * *n;
  955. ie = id + *n;
  956. itauq = ie + *n;
  957. itaup = itauq + *n;
  958. itemp = itaup + *n;
  959. dlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  960. i__2 = *n - 1;
  961. i__3 = *n - 1;
  962. dlaset_("L", &i__2, &i__3, &c_b109, &c_b109, &work[iqrf + 1], n);
  963. i__2 = *lwork - itemp + 1;
  964. dgebrd_(n, n, &work[iqrf], n, &work[id], &work[ie], &work[itauq],
  965. &work[itaup], &work[itemp], &i__2, info);
  966. /* Solve eigenvalue problem TGK*Z=Z*S. */
  967. /* (Workspace: need 14*N + 2*N*(N+1)) */
  968. itgkz = itemp;
  969. itemp = itgkz + *n * ((*n << 1) + 1);
  970. i__2 = *n << 1;
  971. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  972. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  973. itemp], &iwork[1], info);
  974. /* If needed, compute left singular vectors. */
  975. if (wantu) {
  976. j = itgkz;
  977. i__2 = *ns;
  978. for (i__ = 1; i__ <= i__2; ++i__) {
  979. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  980. j += *n << 1;
  981. }
  982. i__2 = *m - *n;
  983. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  984. ldu);
  985. /* Call DORMBR to compute QB*UB. */
  986. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  987. i__2 = *lwork - itemp + 1;
  988. dormbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  989. &u[u_offset], ldu, &work[itemp], &i__2, info);
  990. /* Call DORMQR to compute Q*(QB*UB). */
  991. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  992. i__2 = *lwork - itemp + 1;
  993. dormqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  994. u[u_offset], ldu, &work[itemp], &i__2, info);
  995. }
  996. /* If needed, compute right singular vectors. */
  997. if (wantvt) {
  998. j = itgkz + *n;
  999. i__2 = *ns;
  1000. for (i__ = 1; i__ <= i__2; ++i__) {
  1001. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1002. j += *n << 1;
  1003. }
  1004. /* Call DORMBR to compute VB**T * PB**T */
  1005. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1006. i__2 = *lwork - itemp + 1;
  1007. dormbr_("P", "R", "T", ns, n, n, &work[iqrf], n, &work[itaup],
  1008. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1009. }
  1010. } else {
  1011. /* Path 2 (M at least N, but not much larger) */
  1012. /* Reduce A to bidiagonal form without QR decomposition */
  1013. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1014. /* U = QB * UB; V**T = VB**T * PB**T */
  1015. /* Bidiagonalize A */
  1016. /* (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB) */
  1017. id = 1;
  1018. ie = id + *n;
  1019. itauq = ie + *n;
  1020. itaup = itauq + *n;
  1021. itemp = itaup + *n;
  1022. i__2 = *lwork - itemp + 1;
  1023. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1024. itauq], &work[itaup], &work[itemp], &i__2, info);
  1025. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1026. /* (Workspace: need 14*N + 2*N*(N+1)) */
  1027. itgkz = itemp;
  1028. itemp = itgkz + *n * ((*n << 1) + 1);
  1029. i__2 = *n << 1;
  1030. dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
  1031. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1032. itemp], &iwork[1], info);
  1033. /* If needed, compute left singular vectors. */
  1034. if (wantu) {
  1035. j = itgkz;
  1036. i__2 = *ns;
  1037. for (i__ = 1; i__ <= i__2; ++i__) {
  1038. dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1039. j += *n << 1;
  1040. }
  1041. i__2 = *m - *n;
  1042. dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
  1043. ldu);
  1044. /* Call DORMBR to compute QB*UB. */
  1045. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1046. i__2 = *lwork - itemp + 1;
  1047. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1048. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1049. }
  1050. /* If needed, compute right singular vectors. */
  1051. if (wantvt) {
  1052. j = itgkz + *n;
  1053. i__2 = *ns;
  1054. for (i__ = 1; i__ <= i__2; ++i__) {
  1055. dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1056. j += *n << 1;
  1057. }
  1058. /* Call DORMBR to compute VB**T * PB**T */
  1059. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1060. i__2 = *lwork - itemp + 1;
  1061. dormbr_("P", "R", "T", ns, n, n, &a[a_offset], lda, &work[
  1062. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1063. ierr);
  1064. }
  1065. }
  1066. } else {
  1067. /* A has more columns than rows. If A has sufficiently more */
  1068. /* columns than rows, first reduce A using the LQ decomposition. */
  1069. if (*n >= mnthr) {
  1070. /* Path 1t (N much larger than M): */
  1071. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1072. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1073. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1074. /* Compute A=L*Q */
  1075. /* (Workspace: need 2*M, prefer M+M*NB) */
  1076. itau = 1;
  1077. itemp = itau + *m;
  1078. i__2 = *lwork - itemp + 1;
  1079. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1080. info);
  1081. /* Copy L into WORK and bidiagonalize it: */
  1082. /* (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB) */
  1083. ilqf = itemp;
  1084. id = ilqf + *m * *m;
  1085. ie = id + *m;
  1086. itauq = ie + *m;
  1087. itaup = itauq + *m;
  1088. itemp = itaup + *m;
  1089. dlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1090. i__2 = *m - 1;
  1091. i__3 = *m - 1;
  1092. dlaset_("U", &i__2, &i__3, &c_b109, &c_b109, &work[ilqf + *m], m);
  1093. i__2 = *lwork - itemp + 1;
  1094. dgebrd_(m, m, &work[ilqf], m, &work[id], &work[ie], &work[itauq],
  1095. &work[itaup], &work[itemp], &i__2, info);
  1096. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1097. /* (Workspace: need 2*M*M+14*M) */
  1098. itgkz = itemp;
  1099. itemp = itgkz + *m * ((*m << 1) + 1);
  1100. i__2 = *m << 1;
  1101. dbdsvdx_("U", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1102. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1103. itemp], &iwork[1], info);
  1104. /* If needed, compute left singular vectors. */
  1105. if (wantu) {
  1106. j = itgkz;
  1107. i__2 = *ns;
  1108. for (i__ = 1; i__ <= i__2; ++i__) {
  1109. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1110. j += *m << 1;
  1111. }
  1112. /* Call DORMBR to compute QB*UB. */
  1113. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1114. i__2 = *lwork - itemp + 1;
  1115. dormbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1116. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1117. }
  1118. /* If needed, compute right singular vectors. */
  1119. if (wantvt) {
  1120. j = itgkz + *m;
  1121. i__2 = *ns;
  1122. for (i__ = 1; i__ <= i__2; ++i__) {
  1123. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1124. j += *m << 1;
  1125. }
  1126. i__2 = *n - *m;
  1127. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1128. vt_dim1 + 1], ldvt);
  1129. /* Call DORMBR to compute (VB**T)*(PB**T) */
  1130. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1131. i__2 = *lwork - itemp + 1;
  1132. dormbr_("P", "R", "T", ns, m, m, &work[ilqf], m, &work[itaup],
  1133. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1134. /* Call DORMLQ to compute ((VB**T)*(PB**T))*Q. */
  1135. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1136. i__2 = *lwork - itemp + 1;
  1137. dormlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1138. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1139. }
  1140. } else {
  1141. /* Path 2t (N greater than M, but not much larger) */
  1142. /* Reduce to bidiagonal form without LQ decomposition */
  1143. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1144. /* U = QB * UB; V**T = VB**T * PB**T */
  1145. /* Bidiagonalize A */
  1146. /* (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB) */
  1147. id = 1;
  1148. ie = id + *m;
  1149. itauq = ie + *m;
  1150. itaup = itauq + *m;
  1151. itemp = itaup + *m;
  1152. i__2 = *lwork - itemp + 1;
  1153. dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
  1154. itauq], &work[itaup], &work[itemp], &i__2, info);
  1155. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1156. /* (Workspace: need 2*M*M+14*M) */
  1157. itgkz = itemp;
  1158. itemp = itgkz + *m * ((*m << 1) + 1);
  1159. i__2 = *m << 1;
  1160. dbdsvdx_("L", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
  1161. iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
  1162. itemp], &iwork[1], info);
  1163. /* If needed, compute left singular vectors. */
  1164. if (wantu) {
  1165. j = itgkz;
  1166. i__2 = *ns;
  1167. for (i__ = 1; i__ <= i__2; ++i__) {
  1168. dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
  1169. j += *m << 1;
  1170. }
  1171. /* Call DORMBR to compute QB*UB. */
  1172. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1173. i__2 = *lwork - itemp + 1;
  1174. dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1175. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1176. }
  1177. /* If needed, compute right singular vectors. */
  1178. if (wantvt) {
  1179. j = itgkz + *m;
  1180. i__2 = *ns;
  1181. for (i__ = 1; i__ <= i__2; ++i__) {
  1182. dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
  1183. j += *m << 1;
  1184. }
  1185. i__2 = *n - *m;
  1186. dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
  1187. vt_dim1 + 1], ldvt);
  1188. /* Call DORMBR to compute VB**T * PB**T */
  1189. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1190. i__2 = *lwork - itemp + 1;
  1191. dormbr_("P", "R", "T", ns, n, m, &a[a_offset], lda, &work[
  1192. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1193. info);
  1194. }
  1195. }
  1196. }
  1197. /* Undo scaling if necessary */
  1198. if (iscl == 1) {
  1199. if (anrm > bignum) {
  1200. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1201. minmn, info);
  1202. }
  1203. if (anrm < smlnum) {
  1204. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1205. minmn, info);
  1206. }
  1207. }
  1208. /* Return optimal workspace in WORK(1) */
  1209. work[1] = (doublereal) maxwrk;
  1210. return 0;
  1211. /* End of DGESVDX */
  1212. } /* dgesvdx_ */