You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgebrd.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c_n1 = -1;
  382. static integer c__3 = 3;
  383. static integer c__2 = 2;
  384. static doublereal c_b21 = -1.;
  385. static doublereal c_b22 = 1.;
  386. /* > \brief \b DGEBRD */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download DGEBRD + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebrd.
  393. f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebrd.
  396. f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebrd.
  399. f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, */
  405. /* INFO ) */
  406. /* INTEGER INFO, LDA, LWORK, M, N */
  407. /* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), */
  408. /* $ TAUQ( * ), WORK( * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > DGEBRD reduces a general real M-by-N matrix A to upper or lower */
  415. /* > bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */
  416. /* > */
  417. /* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
  418. /* > \endverbatim */
  419. /* Arguments: */
  420. /* ========== */
  421. /* > \param[in] M */
  422. /* > \verbatim */
  423. /* > M is INTEGER */
  424. /* > The number of rows in the matrix A. M >= 0. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] N */
  428. /* > \verbatim */
  429. /* > N is INTEGER */
  430. /* > The number of columns in the matrix A. N >= 0. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in,out] A */
  434. /* > \verbatim */
  435. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  436. /* > On entry, the M-by-N general matrix to be reduced. */
  437. /* > On exit, */
  438. /* > if m >= n, the diagonal and the first superdiagonal are */
  439. /* > overwritten with the upper bidiagonal matrix B; the */
  440. /* > elements below the diagonal, with the array TAUQ, represent */
  441. /* > the orthogonal matrix Q as a product of elementary */
  442. /* > reflectors, and the elements above the first superdiagonal, */
  443. /* > with the array TAUP, represent the orthogonal matrix P as */
  444. /* > a product of elementary reflectors; */
  445. /* > if m < n, the diagonal and the first subdiagonal are */
  446. /* > overwritten with the lower bidiagonal matrix B; the */
  447. /* > elements below the first subdiagonal, with the array TAUQ, */
  448. /* > represent the orthogonal matrix Q as a product of */
  449. /* > elementary reflectors, and the elements above the diagonal, */
  450. /* > with the array TAUP, represent the orthogonal matrix P as */
  451. /* > a product of elementary reflectors. */
  452. /* > See Further Details. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] LDA */
  456. /* > \verbatim */
  457. /* > LDA is INTEGER */
  458. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[out] D */
  462. /* > \verbatim */
  463. /* > D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  464. /* > The diagonal elements of the bidiagonal matrix B: */
  465. /* > D(i) = A(i,i). */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[out] E */
  469. /* > \verbatim */
  470. /* > E is DOUBLE PRECISION array, dimension (f2cmin(M,N)-1) */
  471. /* > The off-diagonal elements of the bidiagonal matrix B: */
  472. /* > if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
  473. /* > if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
  474. /* > \endverbatim */
  475. /* > */
  476. /* > \param[out] TAUQ */
  477. /* > \verbatim */
  478. /* > TAUQ is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  479. /* > The scalar factors of the elementary reflectors which */
  480. /* > represent the orthogonal matrix Q. See Further Details. */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[out] TAUP */
  484. /* > \verbatim */
  485. /* > TAUP is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  486. /* > The scalar factors of the elementary reflectors which */
  487. /* > represent the orthogonal matrix P. See Further Details. */
  488. /* > \endverbatim */
  489. /* > */
  490. /* > \param[out] WORK */
  491. /* > \verbatim */
  492. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  493. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  494. /* > \endverbatim */
  495. /* > */
  496. /* > \param[in] LWORK */
  497. /* > \verbatim */
  498. /* > LWORK is INTEGER */
  499. /* > The length of the array WORK. LWORK >= f2cmax(1,M,N). */
  500. /* > For optimum performance LWORK >= (M+N)*NB, where NB */
  501. /* > is the optimal blocksize. */
  502. /* > */
  503. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  504. /* > only calculates the optimal size of the WORK array, returns */
  505. /* > this value as the first entry of the WORK array, and no error */
  506. /* > message related to LWORK is issued by XERBLA. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[out] INFO */
  510. /* > \verbatim */
  511. /* > INFO is INTEGER */
  512. /* > = 0: successful exit */
  513. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  514. /* > \endverbatim */
  515. /* Authors: */
  516. /* ======== */
  517. /* > \author Univ. of Tennessee */
  518. /* > \author Univ. of California Berkeley */
  519. /* > \author Univ. of Colorado Denver */
  520. /* > \author NAG Ltd. */
  521. /* > \date November 2017 */
  522. /* > \ingroup doubleGEcomputational */
  523. /* > \par Further Details: */
  524. /* ===================== */
  525. /* > */
  526. /* > \verbatim */
  527. /* > */
  528. /* > The matrices Q and P are represented as products of elementary */
  529. /* > reflectors: */
  530. /* > */
  531. /* > If m >= n, */
  532. /* > */
  533. /* > Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
  534. /* > */
  535. /* > Each H(i) and G(i) has the form: */
  536. /* > */
  537. /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
  538. /* > */
  539. /* > where tauq and taup are real scalars, and v and u are real vectors; */
  540. /* > v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
  541. /* > u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
  542. /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */
  543. /* > */
  544. /* > If m < n, */
  545. /* > */
  546. /* > Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
  547. /* > */
  548. /* > Each H(i) and G(i) has the form: */
  549. /* > */
  550. /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
  551. /* > */
  552. /* > where tauq and taup are real scalars, and v and u are real vectors; */
  553. /* > v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
  554. /* > u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
  555. /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */
  556. /* > */
  557. /* > The contents of A on exit are illustrated by the following examples: */
  558. /* > */
  559. /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
  560. /* > */
  561. /* > ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
  562. /* > ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
  563. /* > ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
  564. /* > ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
  565. /* > ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
  566. /* > ( v1 v2 v3 v4 v5 ) */
  567. /* > */
  568. /* > where d and e denote diagonal and off-diagonal elements of B, vi */
  569. /* > denotes an element of the vector defining H(i), and ui an element of */
  570. /* > the vector defining G(i). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* ===================================================================== */
  574. /* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer *
  575. lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
  576. taup, doublereal *work, integer *lwork, integer *info)
  577. {
  578. /* System generated locals */
  579. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  580. /* Local variables */
  581. integer i__, j;
  582. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  583. integer *, doublereal *, doublereal *, integer *, doublereal *,
  584. integer *, doublereal *, doublereal *, integer *);
  585. integer nbmin, iinfo, minmn;
  586. extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *,
  587. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  588. doublereal *, integer *);
  589. integer nb;
  590. extern /* Subroutine */ int dlabrd_(integer *, integer *, integer *,
  591. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  592. doublereal *, doublereal *, integer *, doublereal *, integer *);
  593. integer nx, ws;
  594. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  595. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  596. integer *, integer *, ftnlen, ftnlen);
  597. integer ldwrkx, ldwrky, lwkopt;
  598. logical lquery;
  599. /* -- LAPACK computational routine (version 3.8.0) -- */
  600. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  601. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  602. /* November 2017 */
  603. /* ===================================================================== */
  604. /* Test the input parameters */
  605. /* Parameter adjustments */
  606. a_dim1 = *lda;
  607. a_offset = 1 + a_dim1 * 1;
  608. a -= a_offset;
  609. --d__;
  610. --e;
  611. --tauq;
  612. --taup;
  613. --work;
  614. /* Function Body */
  615. *info = 0;
  616. /* Computing MAX */
  617. i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
  618. ftnlen)6, (ftnlen)1);
  619. nb = f2cmax(i__1,i__2);
  620. lwkopt = (*m + *n) * nb;
  621. work[1] = (doublereal) lwkopt;
  622. lquery = *lwork == -1;
  623. if (*m < 0) {
  624. *info = -1;
  625. } else if (*n < 0) {
  626. *info = -2;
  627. } else if (*lda < f2cmax(1,*m)) {
  628. *info = -4;
  629. } else /* if(complicated condition) */ {
  630. /* Computing MAX */
  631. i__1 = f2cmax(1,*m);
  632. if (*lwork < f2cmax(i__1,*n) && ! lquery) {
  633. *info = -10;
  634. }
  635. }
  636. if (*info < 0) {
  637. i__1 = -(*info);
  638. xerbla_("DGEBRD", &i__1, (ftnlen)6);
  639. return 0;
  640. } else if (lquery) {
  641. return 0;
  642. }
  643. /* Quick return if possible */
  644. minmn = f2cmin(*m,*n);
  645. if (minmn == 0) {
  646. work[1] = 1.;
  647. return 0;
  648. }
  649. ws = f2cmax(*m,*n);
  650. ldwrkx = *m;
  651. ldwrky = *n;
  652. if (nb > 1 && nb < minmn) {
  653. /* Set the crossover point NX. */
  654. /* Computing MAX */
  655. i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
  656. ftnlen)6, (ftnlen)1);
  657. nx = f2cmax(i__1,i__2);
  658. /* Determine when to switch from blocked to unblocked code. */
  659. if (nx < minmn) {
  660. ws = (*m + *n) * nb;
  661. if (*lwork < ws) {
  662. /* Not enough work space for the optimal NB, consider using */
  663. /* a smaller block size. */
  664. nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
  665. ftnlen)6, (ftnlen)1);
  666. if (*lwork >= (*m + *n) * nbmin) {
  667. nb = *lwork / (*m + *n);
  668. } else {
  669. nb = 1;
  670. nx = minmn;
  671. }
  672. }
  673. }
  674. } else {
  675. nx = minmn;
  676. }
  677. i__1 = minmn - nx;
  678. i__2 = nb;
  679. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  680. /* Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
  681. /* the matrices X and Y which are needed to update the unreduced */
  682. /* part of the matrix */
  683. i__3 = *m - i__ + 1;
  684. i__4 = *n - i__ + 1;
  685. dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
  686. i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
  687. * nb + 1], &ldwrky);
  688. /* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
  689. /* of the form A := A - V*Y**T - X*U**T */
  690. i__3 = *m - i__ - nb + 1;
  691. i__4 = *n - i__ - nb + 1;
  692. dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__
  693. + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
  694. ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
  695. i__3 = *m - i__ - nb + 1;
  696. i__4 = *n - i__ - nb + 1;
  697. dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
  698. work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
  699. c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
  700. /* Copy diagonal and off-diagonal elements of B back into A */
  701. if (*m >= *n) {
  702. i__3 = i__ + nb - 1;
  703. for (j = i__; j <= i__3; ++j) {
  704. a[j + j * a_dim1] = d__[j];
  705. a[j + (j + 1) * a_dim1] = e[j];
  706. /* L10: */
  707. }
  708. } else {
  709. i__3 = i__ + nb - 1;
  710. for (j = i__; j <= i__3; ++j) {
  711. a[j + j * a_dim1] = d__[j];
  712. a[j + 1 + j * a_dim1] = e[j];
  713. /* L20: */
  714. }
  715. }
  716. /* L30: */
  717. }
  718. /* Use unblocked code to reduce the remainder of the matrix */
  719. i__2 = *m - i__ + 1;
  720. i__1 = *n - i__ + 1;
  721. dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
  722. tauq[i__], &taup[i__], &work[1], &iinfo);
  723. work[1] = (doublereal) ws;
  724. return 0;
  725. /* End of DGEBRD */
  726. } /* dgebrd_ */