You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrsyl.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. /* > \brief \b CTRSYL */
  382. /* =========== DOCUMENTATION =========== */
  383. /* Online html documentation available at */
  384. /* http://www.netlib.org/lapack/explore-html/ */
  385. /* > \htmlonly */
  386. /* > Download CTRSYL + dependencies */
  387. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsyl.
  388. f"> */
  389. /* > [TGZ]</a> */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsyl.
  391. f"> */
  392. /* > [ZIP]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsyl.
  394. f"> */
  395. /* > [TXT]</a> */
  396. /* > \endhtmlonly */
  397. /* Definition: */
  398. /* =========== */
  399. /* SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  400. /* LDC, SCALE, INFO ) */
  401. /* CHARACTER TRANA, TRANB */
  402. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  403. /* REAL SCALE */
  404. /* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > CTRSYL solves the complex Sylvester matrix equation: */
  411. /* > */
  412. /* > op(A)*X + X*op(B) = scale*C or */
  413. /* > op(A)*X - X*op(B) = scale*C, */
  414. /* > */
  415. /* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
  416. /* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
  417. /* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
  418. /* > overflow in X. */
  419. /* > \endverbatim */
  420. /* Arguments: */
  421. /* ========== */
  422. /* > \param[in] TRANA */
  423. /* > \verbatim */
  424. /* > TRANA is CHARACTER*1 */
  425. /* > Specifies the option op(A): */
  426. /* > = 'N': op(A) = A (No transpose) */
  427. /* > = 'C': op(A) = A**H (Conjugate transpose) */
  428. /* > \endverbatim */
  429. /* > */
  430. /* > \param[in] TRANB */
  431. /* > \verbatim */
  432. /* > TRANB is CHARACTER*1 */
  433. /* > Specifies the option op(B): */
  434. /* > = 'N': op(B) = B (No transpose) */
  435. /* > = 'C': op(B) = B**H (Conjugate transpose) */
  436. /* > \endverbatim */
  437. /* > */
  438. /* > \param[in] ISGN */
  439. /* > \verbatim */
  440. /* > ISGN is INTEGER */
  441. /* > Specifies the sign in the equation: */
  442. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  443. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] M */
  447. /* > \verbatim */
  448. /* > M is INTEGER */
  449. /* > The order of the matrix A, and the number of rows in the */
  450. /* > matrices X and C. M >= 0. */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in] N */
  454. /* > \verbatim */
  455. /* > N is INTEGER */
  456. /* > The order of the matrix B, and the number of columns in the */
  457. /* > matrices X and C. N >= 0. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[in] A */
  461. /* > \verbatim */
  462. /* > A is COMPLEX array, dimension (LDA,M) */
  463. /* > The upper triangular matrix A. */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[in] LDA */
  467. /* > \verbatim */
  468. /* > LDA is INTEGER */
  469. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[in] B */
  473. /* > \verbatim */
  474. /* > B is COMPLEX array, dimension (LDB,N) */
  475. /* > The upper triangular matrix B. */
  476. /* > \endverbatim */
  477. /* > */
  478. /* > \param[in] LDB */
  479. /* > \verbatim */
  480. /* > LDB is INTEGER */
  481. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  482. /* > \endverbatim */
  483. /* > */
  484. /* > \param[in,out] C */
  485. /* > \verbatim */
  486. /* > C is COMPLEX array, dimension (LDC,N) */
  487. /* > On entry, the M-by-N right hand side matrix C. */
  488. /* > On exit, C is overwritten by the solution matrix X. */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[in] LDC */
  492. /* > \verbatim */
  493. /* > LDC is INTEGER */
  494. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[out] SCALE */
  498. /* > \verbatim */
  499. /* > SCALE is REAL */
  500. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  501. /* > \endverbatim */
  502. /* > */
  503. /* > \param[out] INFO */
  504. /* > \verbatim */
  505. /* > INFO is INTEGER */
  506. /* > = 0: successful exit */
  507. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  508. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  509. /* > values were used to solve the equation (but the matrices */
  510. /* > A and B are unchanged). */
  511. /* > \endverbatim */
  512. /* Authors: */
  513. /* ======== */
  514. /* > \author Univ. of Tennessee */
  515. /* > \author Univ. of California Berkeley */
  516. /* > \author Univ. of Colorado Denver */
  517. /* > \author NAG Ltd. */
  518. /* > \date December 2016 */
  519. /* > \ingroup complexSYcomputational */
  520. /* ===================================================================== */
  521. /* Subroutine */ int ctrsyl_(char *trana, char *tranb, integer *isgn, integer
  522. *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
  523. complex *c__, integer *ldc, real *scale, integer *info)
  524. {
  525. /* System generated locals */
  526. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  527. i__3, i__4;
  528. real r__1, r__2;
  529. complex q__1, q__2, q__3, q__4;
  530. /* Local variables */
  531. real smin;
  532. complex suml, sumr;
  533. integer j, k, l;
  534. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  535. *, complex *, integer *);
  536. extern logical lsame_(char *, char *);
  537. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  538. *, complex *, integer *);
  539. complex a11;
  540. real db;
  541. extern /* Subroutine */ int slabad_(real *, real *);
  542. extern real clange_(char *, integer *, integer *, complex *, integer *,
  543. real *);
  544. complex x11;
  545. extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
  546. real scaloc;
  547. extern real slamch_(char *);
  548. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  549. *), xerbla_(char *, integer *, ftnlen);
  550. real bignum;
  551. logical notrna, notrnb;
  552. real smlnum, da11;
  553. complex vec;
  554. real dum[1], eps, sgn;
  555. /* -- LAPACK computational routine (version 3.7.0) -- */
  556. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  557. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  558. /* December 2016 */
  559. /* ===================================================================== */
  560. /* Decode and Test input parameters */
  561. /* Parameter adjustments */
  562. a_dim1 = *lda;
  563. a_offset = 1 + a_dim1 * 1;
  564. a -= a_offset;
  565. b_dim1 = *ldb;
  566. b_offset = 1 + b_dim1 * 1;
  567. b -= b_offset;
  568. c_dim1 = *ldc;
  569. c_offset = 1 + c_dim1 * 1;
  570. c__ -= c_offset;
  571. /* Function Body */
  572. notrna = lsame_(trana, "N");
  573. notrnb = lsame_(tranb, "N");
  574. *info = 0;
  575. if (! notrna && ! lsame_(trana, "C")) {
  576. *info = -1;
  577. } else if (! notrnb && ! lsame_(tranb, "C")) {
  578. *info = -2;
  579. } else if (*isgn != 1 && *isgn != -1) {
  580. *info = -3;
  581. } else if (*m < 0) {
  582. *info = -4;
  583. } else if (*n < 0) {
  584. *info = -5;
  585. } else if (*lda < f2cmax(1,*m)) {
  586. *info = -7;
  587. } else if (*ldb < f2cmax(1,*n)) {
  588. *info = -9;
  589. } else if (*ldc < f2cmax(1,*m)) {
  590. *info = -11;
  591. }
  592. if (*info != 0) {
  593. i__1 = -(*info);
  594. xerbla_("CTRSYL", &i__1, (ftnlen)6);
  595. return 0;
  596. }
  597. /* Quick return if possible */
  598. *scale = 1.f;
  599. if (*m == 0 || *n == 0) {
  600. return 0;
  601. }
  602. /* Set constants to control overflow */
  603. eps = slamch_("P");
  604. smlnum = slamch_("S");
  605. bignum = 1.f / smlnum;
  606. slabad_(&smlnum, &bignum);
  607. smlnum = smlnum * (real) (*m * *n) / eps;
  608. bignum = 1.f / smlnum;
  609. /* Computing MAX */
  610. r__1 = smlnum, r__2 = eps * clange_("M", m, m, &a[a_offset], lda, dum), r__1 = f2cmax(r__1,r__2), r__2 = eps * clange_("M", n, n,
  611. &b[b_offset], ldb, dum);
  612. smin = f2cmax(r__1,r__2);
  613. sgn = (real) (*isgn);
  614. if (notrna && notrnb) {
  615. /* Solve A*X + ISGN*X*B = scale*C. */
  616. /* The (K,L)th block of X is determined starting from */
  617. /* bottom-left corner column by column by */
  618. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  619. /* Where */
  620. /* M L-1 */
  621. /* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
  622. /* I=K+1 J=1 */
  623. i__1 = *n;
  624. for (l = 1; l <= i__1; ++l) {
  625. for (k = *m; k >= 1; --k) {
  626. i__2 = *m - k;
  627. /* Computing MIN */
  628. i__3 = k + 1;
  629. /* Computing MIN */
  630. i__4 = k + 1;
  631. cdotu_(&q__1, &i__2, &a[k + f2cmin(i__3,*m) * a_dim1], lda, &c__[
  632. f2cmin(i__4,*m) + l * c_dim1], &c__1);
  633. suml.r = q__1.r, suml.i = q__1.i;
  634. i__2 = l - 1;
  635. cdotu_(&q__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  636. , &c__1);
  637. sumr.r = q__1.r, sumr.i = q__1.i;
  638. i__2 = k + l * c_dim1;
  639. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  640. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  641. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  642. vec.r = q__1.r, vec.i = q__1.i;
  643. scaloc = 1.f;
  644. i__2 = k + k * a_dim1;
  645. i__3 = l + l * b_dim1;
  646. q__2.r = sgn * b[i__3].r, q__2.i = sgn * b[i__3].i;
  647. q__1.r = a[i__2].r + q__2.r, q__1.i = a[i__2].i + q__2.i;
  648. a11.r = q__1.r, a11.i = q__1.i;
  649. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  650. r__2));
  651. if (da11 <= smin) {
  652. a11.r = smin, a11.i = 0.f;
  653. da11 = smin;
  654. *info = 1;
  655. }
  656. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  657. r__2));
  658. if (da11 < 1.f && db > 1.f) {
  659. if (db > bignum * da11) {
  660. scaloc = 1.f / db;
  661. }
  662. }
  663. q__3.r = scaloc, q__3.i = 0.f;
  664. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  665. q__3.i + vec.i * q__3.r;
  666. cladiv_(&q__1, &q__2, &a11);
  667. x11.r = q__1.r, x11.i = q__1.i;
  668. if (scaloc != 1.f) {
  669. i__2 = *n;
  670. for (j = 1; j <= i__2; ++j) {
  671. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  672. /* L10: */
  673. }
  674. *scale *= scaloc;
  675. }
  676. i__2 = k + l * c_dim1;
  677. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  678. /* L20: */
  679. }
  680. /* L30: */
  681. }
  682. } else if (! notrna && notrnb) {
  683. /* Solve A**H *X + ISGN*X*B = scale*C. */
  684. /* The (K,L)th block of X is determined starting from */
  685. /* upper-left corner column by column by */
  686. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  687. /* Where */
  688. /* K-1 L-1 */
  689. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
  690. /* I=1 J=1 */
  691. i__1 = *n;
  692. for (l = 1; l <= i__1; ++l) {
  693. i__2 = *m;
  694. for (k = 1; k <= i__2; ++k) {
  695. i__3 = k - 1;
  696. cdotc_(&q__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
  697. c_dim1 + 1], &c__1);
  698. suml.r = q__1.r, suml.i = q__1.i;
  699. i__3 = l - 1;
  700. cdotu_(&q__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  701. , &c__1);
  702. sumr.r = q__1.r, sumr.i = q__1.i;
  703. i__3 = k + l * c_dim1;
  704. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  705. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  706. q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i;
  707. vec.r = q__1.r, vec.i = q__1.i;
  708. scaloc = 1.f;
  709. r_cnjg(&q__2, &a[k + k * a_dim1]);
  710. i__3 = l + l * b_dim1;
  711. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  712. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  713. a11.r = q__1.r, a11.i = q__1.i;
  714. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  715. r__2));
  716. if (da11 <= smin) {
  717. a11.r = smin, a11.i = 0.f;
  718. da11 = smin;
  719. *info = 1;
  720. }
  721. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  722. r__2));
  723. if (da11 < 1.f && db > 1.f) {
  724. if (db > bignum * da11) {
  725. scaloc = 1.f / db;
  726. }
  727. }
  728. q__3.r = scaloc, q__3.i = 0.f;
  729. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  730. q__3.i + vec.i * q__3.r;
  731. cladiv_(&q__1, &q__2, &a11);
  732. x11.r = q__1.r, x11.i = q__1.i;
  733. if (scaloc != 1.f) {
  734. i__3 = *n;
  735. for (j = 1; j <= i__3; ++j) {
  736. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  737. /* L40: */
  738. }
  739. *scale *= scaloc;
  740. }
  741. i__3 = k + l * c_dim1;
  742. c__[i__3].r = x11.r, c__[i__3].i = x11.i;
  743. /* L50: */
  744. }
  745. /* L60: */
  746. }
  747. } else if (! notrna && ! notrnb) {
  748. /* Solve A**H*X + ISGN*X*B**H = C. */
  749. /* The (K,L)th block of X is determined starting from */
  750. /* upper-right corner column by column by */
  751. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  752. /* Where */
  753. /* K-1 */
  754. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + */
  755. /* I=1 */
  756. /* N */
  757. /* ISGN*SUM [X(K,J)*B**H(L,J)]. */
  758. /* J=L+1 */
  759. for (l = *n; l >= 1; --l) {
  760. i__1 = *m;
  761. for (k = 1; k <= i__1; ++k) {
  762. i__2 = k - 1;
  763. cdotc_(&q__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
  764. c_dim1 + 1], &c__1);
  765. suml.r = q__1.r, suml.i = q__1.i;
  766. i__2 = *n - l;
  767. /* Computing MIN */
  768. i__3 = l + 1;
  769. /* Computing MIN */
  770. i__4 = l + 1;
  771. cdotc_(&q__1, &i__2, &c__[k + f2cmin(i__3,*n) * c_dim1], ldc, &b[
  772. l + f2cmin(i__4,*n) * b_dim1], ldb);
  773. sumr.r = q__1.r, sumr.i = q__1.i;
  774. i__2 = k + l * c_dim1;
  775. r_cnjg(&q__4, &sumr);
  776. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  777. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  778. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  779. vec.r = q__1.r, vec.i = q__1.i;
  780. scaloc = 1.f;
  781. i__2 = k + k * a_dim1;
  782. i__3 = l + l * b_dim1;
  783. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  784. q__2.r = a[i__2].r + q__3.r, q__2.i = a[i__2].i + q__3.i;
  785. r_cnjg(&q__1, &q__2);
  786. a11.r = q__1.r, a11.i = q__1.i;
  787. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  788. r__2));
  789. if (da11 <= smin) {
  790. a11.r = smin, a11.i = 0.f;
  791. da11 = smin;
  792. *info = 1;
  793. }
  794. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  795. r__2));
  796. if (da11 < 1.f && db > 1.f) {
  797. if (db > bignum * da11) {
  798. scaloc = 1.f / db;
  799. }
  800. }
  801. q__3.r = scaloc, q__3.i = 0.f;
  802. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  803. q__3.i + vec.i * q__3.r;
  804. cladiv_(&q__1, &q__2, &a11);
  805. x11.r = q__1.r, x11.i = q__1.i;
  806. if (scaloc != 1.f) {
  807. i__2 = *n;
  808. for (j = 1; j <= i__2; ++j) {
  809. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  810. /* L70: */
  811. }
  812. *scale *= scaloc;
  813. }
  814. i__2 = k + l * c_dim1;
  815. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  816. /* L80: */
  817. }
  818. /* L90: */
  819. }
  820. } else if (notrna && ! notrnb) {
  821. /* Solve A*X + ISGN*X*B**H = C. */
  822. /* The (K,L)th block of X is determined starting from */
  823. /* bottom-left corner column by column by */
  824. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  825. /* Where */
  826. /* M N */
  827. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] */
  828. /* I=K+1 J=L+1 */
  829. for (l = *n; l >= 1; --l) {
  830. for (k = *m; k >= 1; --k) {
  831. i__1 = *m - k;
  832. /* Computing MIN */
  833. i__2 = k + 1;
  834. /* Computing MIN */
  835. i__3 = k + 1;
  836. cdotu_(&q__1, &i__1, &a[k + f2cmin(i__2,*m) * a_dim1], lda, &c__[
  837. f2cmin(i__3,*m) + l * c_dim1], &c__1);
  838. suml.r = q__1.r, suml.i = q__1.i;
  839. i__1 = *n - l;
  840. /* Computing MIN */
  841. i__2 = l + 1;
  842. /* Computing MIN */
  843. i__3 = l + 1;
  844. cdotc_(&q__1, &i__1, &c__[k + f2cmin(i__2,*n) * c_dim1], ldc, &b[
  845. l + f2cmin(i__3,*n) * b_dim1], ldb);
  846. sumr.r = q__1.r, sumr.i = q__1.i;
  847. i__1 = k + l * c_dim1;
  848. r_cnjg(&q__4, &sumr);
  849. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  850. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  851. q__1.r = c__[i__1].r - q__2.r, q__1.i = c__[i__1].i - q__2.i;
  852. vec.r = q__1.r, vec.i = q__1.i;
  853. scaloc = 1.f;
  854. i__1 = k + k * a_dim1;
  855. r_cnjg(&q__3, &b[l + l * b_dim1]);
  856. q__2.r = sgn * q__3.r, q__2.i = sgn * q__3.i;
  857. q__1.r = a[i__1].r + q__2.r, q__1.i = a[i__1].i + q__2.i;
  858. a11.r = q__1.r, a11.i = q__1.i;
  859. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  860. r__2));
  861. if (da11 <= smin) {
  862. a11.r = smin, a11.i = 0.f;
  863. da11 = smin;
  864. *info = 1;
  865. }
  866. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  867. r__2));
  868. if (da11 < 1.f && db > 1.f) {
  869. if (db > bignum * da11) {
  870. scaloc = 1.f / db;
  871. }
  872. }
  873. q__3.r = scaloc, q__3.i = 0.f;
  874. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  875. q__3.i + vec.i * q__3.r;
  876. cladiv_(&q__1, &q__2, &a11);
  877. x11.r = q__1.r, x11.i = q__1.i;
  878. if (scaloc != 1.f) {
  879. i__1 = *n;
  880. for (j = 1; j <= i__1; ++j) {
  881. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  882. /* L100: */
  883. }
  884. *scale *= scaloc;
  885. }
  886. i__1 = k + l * c_dim1;
  887. c__[i__1].r = x11.r, c__[i__1].i = x11.i;
  888. /* L110: */
  889. }
  890. /* L120: */
  891. }
  892. }
  893. return 0;
  894. /* End of CTRSYL */
  895. } /* ctrsyl_ */