You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctprfs.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. /* > \brief \b CTPRFS */
  382. /* =========== DOCUMENTATION =========== */
  383. /* Online html documentation available at */
  384. /* http://www.netlib.org/lapack/explore-html/ */
  385. /* > \htmlonly */
  386. /* > Download CTPRFS + dependencies */
  387. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctprfs.
  388. f"> */
  389. /* > [TGZ]</a> */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctprfs.
  391. f"> */
  392. /* > [ZIP]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctprfs.
  394. f"> */
  395. /* > [TXT]</a> */
  396. /* > \endhtmlonly */
  397. /* Definition: */
  398. /* =========== */
  399. /* SUBROUTINE CTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, */
  400. /* FERR, BERR, WORK, RWORK, INFO ) */
  401. /* CHARACTER DIAG, TRANS, UPLO */
  402. /* INTEGER INFO, LDB, LDX, N, NRHS */
  403. /* REAL BERR( * ), FERR( * ), RWORK( * ) */
  404. /* COMPLEX AP( * ), B( LDB, * ), WORK( * ), X( LDX, * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > CTPRFS provides error bounds and backward error estimates for the */
  411. /* > solution to a system of linear equations with a triangular packed */
  412. /* > coefficient matrix. */
  413. /* > */
  414. /* > The solution matrix X must be computed by CTPTRS or some other */
  415. /* > means before entering this routine. CTPRFS does not do iterative */
  416. /* > refinement because doing so cannot improve the backward error. */
  417. /* > \endverbatim */
  418. /* Arguments: */
  419. /* ========== */
  420. /* > \param[in] UPLO */
  421. /* > \verbatim */
  422. /* > UPLO is CHARACTER*1 */
  423. /* > = 'U': A is upper triangular; */
  424. /* > = 'L': A is lower triangular. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] TRANS */
  428. /* > \verbatim */
  429. /* > TRANS is CHARACTER*1 */
  430. /* > Specifies the form of the system of equations: */
  431. /* > = 'N': A * X = B (No transpose) */
  432. /* > = 'T': A**T * X = B (Transpose) */
  433. /* > = 'C': A**H * X = B (Conjugate transpose) */
  434. /* > \endverbatim */
  435. /* > */
  436. /* > \param[in] DIAG */
  437. /* > \verbatim */
  438. /* > DIAG is CHARACTER*1 */
  439. /* > = 'N': A is non-unit triangular; */
  440. /* > = 'U': A is unit triangular. */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[in] N */
  444. /* > \verbatim */
  445. /* > N is INTEGER */
  446. /* > The order of the matrix A. N >= 0. */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[in] NRHS */
  450. /* > \verbatim */
  451. /* > NRHS is INTEGER */
  452. /* > The number of right hand sides, i.e., the number of columns */
  453. /* > of the matrices B and X. NRHS >= 0. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] AP */
  457. /* > \verbatim */
  458. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  459. /* > The upper or lower triangular matrix A, packed columnwise in */
  460. /* > a linear array. The j-th column of A is stored in the array */
  461. /* > AP as follows: */
  462. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  463. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  464. /* > If DIAG = 'U', the diagonal elements of A are not referenced */
  465. /* > and are assumed to be 1. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] B */
  469. /* > \verbatim */
  470. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  471. /* > The right hand side matrix B. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in] LDB */
  475. /* > \verbatim */
  476. /* > LDB is INTEGER */
  477. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[in] X */
  481. /* > \verbatim */
  482. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  483. /* > The solution matrix X. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in] LDX */
  487. /* > \verbatim */
  488. /* > LDX is INTEGER */
  489. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[out] FERR */
  493. /* > \verbatim */
  494. /* > FERR is REAL array, dimension (NRHS) */
  495. /* > The estimated forward error bound for each solution vector */
  496. /* > X(j) (the j-th column of the solution matrix X). */
  497. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  498. /* > is an estimated upper bound for the magnitude of the largest */
  499. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  500. /* > largest element in X(j). The estimate is as reliable as */
  501. /* > the estimate for RCOND, and is almost always a slight */
  502. /* > overestimate of the true error. */
  503. /* > \endverbatim */
  504. /* > */
  505. /* > \param[out] BERR */
  506. /* > \verbatim */
  507. /* > BERR is REAL array, dimension (NRHS) */
  508. /* > The componentwise relative backward error of each solution */
  509. /* > vector X(j) (i.e., the smallest relative change in */
  510. /* > any element of A or B that makes X(j) an exact solution). */
  511. /* > \endverbatim */
  512. /* > */
  513. /* > \param[out] WORK */
  514. /* > \verbatim */
  515. /* > WORK is COMPLEX array, dimension (2*N) */
  516. /* > \endverbatim */
  517. /* > */
  518. /* > \param[out] RWORK */
  519. /* > \verbatim */
  520. /* > RWORK is REAL array, dimension (N) */
  521. /* > \endverbatim */
  522. /* > */
  523. /* > \param[out] INFO */
  524. /* > \verbatim */
  525. /* > INFO is INTEGER */
  526. /* > = 0: successful exit */
  527. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  528. /* > \endverbatim */
  529. /* Authors: */
  530. /* ======== */
  531. /* > \author Univ. of Tennessee */
  532. /* > \author Univ. of California Berkeley */
  533. /* > \author Univ. of Colorado Denver */
  534. /* > \author NAG Ltd. */
  535. /* > \date December 2016 */
  536. /* > \ingroup complexOTHERcomputational */
  537. /* ===================================================================== */
  538. /* Subroutine */ int ctprfs_(char *uplo, char *trans, char *diag, integer *n,
  539. integer *nrhs, complex *ap, complex *b, integer *ldb, complex *x,
  540. integer *ldx, real *ferr, real *berr, complex *work, real *rwork,
  541. integer *info)
  542. {
  543. /* System generated locals */
  544. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  545. real r__1, r__2, r__3, r__4;
  546. complex q__1;
  547. /* Local variables */
  548. integer kase;
  549. real safe1, safe2;
  550. integer i__, j, k;
  551. real s;
  552. extern logical lsame_(char *, char *);
  553. integer isave[3];
  554. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  555. complex *, integer *), caxpy_(integer *, complex *, complex *,
  556. integer *, complex *, integer *), ctpmv_(char *, char *, char *,
  557. integer *, complex *, complex *, integer *);
  558. logical upper;
  559. extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *,
  560. complex *, complex *, integer *), clacn2_(
  561. integer *, complex *, complex *, real *, integer *, integer *);
  562. integer kc;
  563. real xk;
  564. extern real slamch_(char *);
  565. integer nz;
  566. real safmin;
  567. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  568. logical notran;
  569. char transn[1], transt[1];
  570. logical nounit;
  571. real lstres, eps;
  572. /* -- LAPACK computational routine (version 3.7.0) -- */
  573. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  574. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  575. /* December 2016 */
  576. /* ===================================================================== */
  577. /* Test the input parameters. */
  578. /* Parameter adjustments */
  579. --ap;
  580. b_dim1 = *ldb;
  581. b_offset = 1 + b_dim1 * 1;
  582. b -= b_offset;
  583. x_dim1 = *ldx;
  584. x_offset = 1 + x_dim1 * 1;
  585. x -= x_offset;
  586. --ferr;
  587. --berr;
  588. --work;
  589. --rwork;
  590. /* Function Body */
  591. *info = 0;
  592. upper = lsame_(uplo, "U");
  593. notran = lsame_(trans, "N");
  594. nounit = lsame_(diag, "N");
  595. if (! upper && ! lsame_(uplo, "L")) {
  596. *info = -1;
  597. } else if (! notran && ! lsame_(trans, "T") && !
  598. lsame_(trans, "C")) {
  599. *info = -2;
  600. } else if (! nounit && ! lsame_(diag, "U")) {
  601. *info = -3;
  602. } else if (*n < 0) {
  603. *info = -4;
  604. } else if (*nrhs < 0) {
  605. *info = -5;
  606. } else if (*ldb < f2cmax(1,*n)) {
  607. *info = -8;
  608. } else if (*ldx < f2cmax(1,*n)) {
  609. *info = -10;
  610. }
  611. if (*info != 0) {
  612. i__1 = -(*info);
  613. xerbla_("CTPRFS", &i__1, (ftnlen)6);
  614. return 0;
  615. }
  616. /* Quick return if possible */
  617. if (*n == 0 || *nrhs == 0) {
  618. i__1 = *nrhs;
  619. for (j = 1; j <= i__1; ++j) {
  620. ferr[j] = 0.f;
  621. berr[j] = 0.f;
  622. /* L10: */
  623. }
  624. return 0;
  625. }
  626. if (notran) {
  627. *(unsigned char *)transn = 'N';
  628. *(unsigned char *)transt = 'C';
  629. } else {
  630. *(unsigned char *)transn = 'C';
  631. *(unsigned char *)transt = 'N';
  632. }
  633. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  634. nz = *n + 1;
  635. eps = slamch_("Epsilon");
  636. safmin = slamch_("Safe minimum");
  637. safe1 = nz * safmin;
  638. safe2 = safe1 / eps;
  639. /* Do for each right hand side */
  640. i__1 = *nrhs;
  641. for (j = 1; j <= i__1; ++j) {
  642. /* Compute residual R = B - op(A) * X, */
  643. /* where op(A) = A, A**T, or A**H, depending on TRANS. */
  644. ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
  645. ctpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1);
  646. q__1.r = -1.f, q__1.i = 0.f;
  647. caxpy_(n, &q__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  648. /* Compute componentwise relative backward error from formula */
  649. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  650. /* where abs(Z) is the componentwise absolute value of the matrix */
  651. /* or vector Z. If the i-th component of the denominator is less */
  652. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  653. /* numerator and denominator before dividing. */
  654. i__2 = *n;
  655. for (i__ = 1; i__ <= i__2; ++i__) {
  656. i__3 = i__ + j * b_dim1;
  657. rwork[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[
  658. i__ + j * b_dim1]), abs(r__2));
  659. /* L20: */
  660. }
  661. if (notran) {
  662. /* Compute abs(A)*abs(X) + abs(B). */
  663. if (upper) {
  664. kc = 1;
  665. if (nounit) {
  666. i__2 = *n;
  667. for (k = 1; k <= i__2; ++k) {
  668. i__3 = k + j * x_dim1;
  669. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  670. x[k + j * x_dim1]), abs(r__2));
  671. i__3 = k;
  672. for (i__ = 1; i__ <= i__3; ++i__) {
  673. i__4 = kc + i__ - 1;
  674. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  675. r__2 = r_imag(&ap[kc + i__ - 1]), abs(
  676. r__2))) * xk;
  677. /* L30: */
  678. }
  679. kc += k;
  680. /* L40: */
  681. }
  682. } else {
  683. i__2 = *n;
  684. for (k = 1; k <= i__2; ++k) {
  685. i__3 = k + j * x_dim1;
  686. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  687. x[k + j * x_dim1]), abs(r__2));
  688. i__3 = k - 1;
  689. for (i__ = 1; i__ <= i__3; ++i__) {
  690. i__4 = kc + i__ - 1;
  691. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  692. r__2 = r_imag(&ap[kc + i__ - 1]), abs(
  693. r__2))) * xk;
  694. /* L50: */
  695. }
  696. rwork[k] += xk;
  697. kc += k;
  698. /* L60: */
  699. }
  700. }
  701. } else {
  702. kc = 1;
  703. if (nounit) {
  704. i__2 = *n;
  705. for (k = 1; k <= i__2; ++k) {
  706. i__3 = k + j * x_dim1;
  707. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  708. x[k + j * x_dim1]), abs(r__2));
  709. i__3 = *n;
  710. for (i__ = k; i__ <= i__3; ++i__) {
  711. i__4 = kc + i__ - k;
  712. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  713. r__2 = r_imag(&ap[kc + i__ - k]), abs(
  714. r__2))) * xk;
  715. /* L70: */
  716. }
  717. kc = kc + *n - k + 1;
  718. /* L80: */
  719. }
  720. } else {
  721. i__2 = *n;
  722. for (k = 1; k <= i__2; ++k) {
  723. i__3 = k + j * x_dim1;
  724. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  725. x[k + j * x_dim1]), abs(r__2));
  726. i__3 = *n;
  727. for (i__ = k + 1; i__ <= i__3; ++i__) {
  728. i__4 = kc + i__ - k;
  729. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  730. r__2 = r_imag(&ap[kc + i__ - k]), abs(
  731. r__2))) * xk;
  732. /* L90: */
  733. }
  734. rwork[k] += xk;
  735. kc = kc + *n - k + 1;
  736. /* L100: */
  737. }
  738. }
  739. }
  740. } else {
  741. /* Compute abs(A**H)*abs(X) + abs(B). */
  742. if (upper) {
  743. kc = 1;
  744. if (nounit) {
  745. i__2 = *n;
  746. for (k = 1; k <= i__2; ++k) {
  747. s = 0.f;
  748. i__3 = k;
  749. for (i__ = 1; i__ <= i__3; ++i__) {
  750. i__4 = kc + i__ - 1;
  751. i__5 = i__ + j * x_dim1;
  752. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  753. r_imag(&ap[kc + i__ - 1]), abs(r__2))) * (
  754. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  755. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  756. /* L110: */
  757. }
  758. rwork[k] += s;
  759. kc += k;
  760. /* L120: */
  761. }
  762. } else {
  763. i__2 = *n;
  764. for (k = 1; k <= i__2; ++k) {
  765. i__3 = k + j * x_dim1;
  766. s = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[
  767. k + j * x_dim1]), abs(r__2));
  768. i__3 = k - 1;
  769. for (i__ = 1; i__ <= i__3; ++i__) {
  770. i__4 = kc + i__ - 1;
  771. i__5 = i__ + j * x_dim1;
  772. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  773. r_imag(&ap[kc + i__ - 1]), abs(r__2))) * (
  774. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  775. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  776. /* L130: */
  777. }
  778. rwork[k] += s;
  779. kc += k;
  780. /* L140: */
  781. }
  782. }
  783. } else {
  784. kc = 1;
  785. if (nounit) {
  786. i__2 = *n;
  787. for (k = 1; k <= i__2; ++k) {
  788. s = 0.f;
  789. i__3 = *n;
  790. for (i__ = k; i__ <= i__3; ++i__) {
  791. i__4 = kc + i__ - k;
  792. i__5 = i__ + j * x_dim1;
  793. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  794. r_imag(&ap[kc + i__ - k]), abs(r__2))) * (
  795. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  796. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  797. /* L150: */
  798. }
  799. rwork[k] += s;
  800. kc = kc + *n - k + 1;
  801. /* L160: */
  802. }
  803. } else {
  804. i__2 = *n;
  805. for (k = 1; k <= i__2; ++k) {
  806. i__3 = k + j * x_dim1;
  807. s = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[
  808. k + j * x_dim1]), abs(r__2));
  809. i__3 = *n;
  810. for (i__ = k + 1; i__ <= i__3; ++i__) {
  811. i__4 = kc + i__ - k;
  812. i__5 = i__ + j * x_dim1;
  813. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  814. r_imag(&ap[kc + i__ - k]), abs(r__2))) * (
  815. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  816. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  817. /* L170: */
  818. }
  819. rwork[k] += s;
  820. kc = kc + *n - k + 1;
  821. /* L180: */
  822. }
  823. }
  824. }
  825. }
  826. s = 0.f;
  827. i__2 = *n;
  828. for (i__ = 1; i__ <= i__2; ++i__) {
  829. if (rwork[i__] > safe2) {
  830. /* Computing MAX */
  831. i__3 = i__;
  832. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  833. r_imag(&work[i__]), abs(r__2))) / rwork[i__];
  834. s = f2cmax(r__3,r__4);
  835. } else {
  836. /* Computing MAX */
  837. i__3 = i__;
  838. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  839. r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
  840. + safe1);
  841. s = f2cmax(r__3,r__4);
  842. }
  843. /* L190: */
  844. }
  845. berr[j] = s;
  846. /* Bound error from formula */
  847. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  848. /* norm( abs(inv(op(A)))* */
  849. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  850. /* where */
  851. /* norm(Z) is the magnitude of the largest component of Z */
  852. /* inv(op(A)) is the inverse of op(A) */
  853. /* abs(Z) is the componentwise absolute value of the matrix or */
  854. /* vector Z */
  855. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  856. /* EPS is machine epsilon */
  857. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  858. /* is incremented by SAFE1 if the i-th component of */
  859. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  860. /* Use CLACN2 to estimate the infinity-norm of the matrix */
  861. /* inv(op(A)) * diag(W), */
  862. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  863. i__2 = *n;
  864. for (i__ = 1; i__ <= i__2; ++i__) {
  865. if (rwork[i__] > safe2) {
  866. i__3 = i__;
  867. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  868. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  869. ;
  870. } else {
  871. i__3 = i__;
  872. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  873. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  874. + safe1;
  875. }
  876. /* L200: */
  877. }
  878. kase = 0;
  879. L210:
  880. clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  881. if (kase != 0) {
  882. if (kase == 1) {
  883. /* Multiply by diag(W)*inv(op(A)**H). */
  884. ctpsv_(uplo, transt, diag, n, &ap[1], &work[1], &c__1);
  885. i__2 = *n;
  886. for (i__ = 1; i__ <= i__2; ++i__) {
  887. i__3 = i__;
  888. i__4 = i__;
  889. i__5 = i__;
  890. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  891. * work[i__5].i;
  892. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  893. /* L220: */
  894. }
  895. } else {
  896. /* Multiply by inv(op(A))*diag(W). */
  897. i__2 = *n;
  898. for (i__ = 1; i__ <= i__2; ++i__) {
  899. i__3 = i__;
  900. i__4 = i__;
  901. i__5 = i__;
  902. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  903. * work[i__5].i;
  904. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  905. /* L230: */
  906. }
  907. ctpsv_(uplo, transn, diag, n, &ap[1], &work[1], &c__1);
  908. }
  909. goto L210;
  910. }
  911. /* Normalize error. */
  912. lstres = 0.f;
  913. i__2 = *n;
  914. for (i__ = 1; i__ <= i__2; ++i__) {
  915. /* Computing MAX */
  916. i__3 = i__ + j * x_dim1;
  917. r__3 = lstres, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  918. r_imag(&x[i__ + j * x_dim1]), abs(r__2));
  919. lstres = f2cmax(r__3,r__4);
  920. /* L240: */
  921. }
  922. if (lstres != 0.f) {
  923. ferr[j] /= lstres;
  924. }
  925. /* L250: */
  926. }
  927. return 0;
  928. /* End of CTPRFS */
  929. } /* ctprfs_ */