You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctgex2.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__2 = 2;
  381. static integer c__1 = 1;
  382. /* > \brief \b CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary
  383. equivalence transformation. */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CTGEX2 + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgex2.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgex2.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgex2.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
  402. /* LDZ, J1, INFO ) */
  403. /* LOGICAL WANTQ, WANTZ */
  404. /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N */
  405. /* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  406. /* $ Z( LDZ, * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
  413. /* > in an upper triangular matrix pair (A, B) by an unitary equivalence */
  414. /* > transformation. */
  415. /* > */
  416. /* > (A, B) must be in generalized Schur canonical form, that is, A and */
  417. /* > B are both upper triangular. */
  418. /* > */
  419. /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
  420. /* > updated. */
  421. /* > */
  422. /* > Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H */
  423. /* > Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H */
  424. /* > */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] WANTQ */
  429. /* > \verbatim */
  430. /* > WANTQ is LOGICAL */
  431. /* > .TRUE. : update the left transformation matrix Q; */
  432. /* > .FALSE.: do not update Q. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] WANTZ */
  436. /* > \verbatim */
  437. /* > WANTZ is LOGICAL */
  438. /* > .TRUE. : update the right transformation matrix Z; */
  439. /* > .FALSE.: do not update Z. */
  440. /* > \endverbatim */
  441. /* > */
  442. /* > \param[in] N */
  443. /* > \verbatim */
  444. /* > N is INTEGER */
  445. /* > The order of the matrices A and B. N >= 0. */
  446. /* > \endverbatim */
  447. /* > */
  448. /* > \param[in,out] A */
  449. /* > \verbatim */
  450. /* > A is COMPLEX array, dimension (LDA,N) */
  451. /* > On entry, the matrix A in the pair (A, B). */
  452. /* > On exit, the updated matrix A. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] LDA */
  456. /* > \verbatim */
  457. /* > LDA is INTEGER */
  458. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in,out] B */
  462. /* > \verbatim */
  463. /* > B is COMPLEX array, dimension (LDB,N) */
  464. /* > On entry, the matrix B in the pair (A, B). */
  465. /* > On exit, the updated matrix B. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] LDB */
  469. /* > \verbatim */
  470. /* > LDB is INTEGER */
  471. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in,out] Q */
  475. /* > \verbatim */
  476. /* > Q is COMPLEX array, dimension (LDQ,N) */
  477. /* > If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
  478. /* > the updated matrix Q. */
  479. /* > Not referenced if WANTQ = .FALSE.. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDQ */
  483. /* > \verbatim */
  484. /* > LDQ is INTEGER */
  485. /* > The leading dimension of the array Q. LDQ >= 1; */
  486. /* > If WANTQ = .TRUE., LDQ >= N. */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[in,out] Z */
  490. /* > \verbatim */
  491. /* > Z is COMPLEX array, dimension (LDZ,N) */
  492. /* > If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
  493. /* > the updated matrix Z. */
  494. /* > Not referenced if WANTZ = .FALSE.. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[in] LDZ */
  498. /* > \verbatim */
  499. /* > LDZ is INTEGER */
  500. /* > The leading dimension of the array Z. LDZ >= 1; */
  501. /* > If WANTZ = .TRUE., LDZ >= N. */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[in] J1 */
  505. /* > \verbatim */
  506. /* > J1 is INTEGER */
  507. /* > The index to the first block (A11, B11). */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[out] INFO */
  511. /* > \verbatim */
  512. /* > INFO is INTEGER */
  513. /* > =0: Successful exit. */
  514. /* > =1: The transformed matrix pair (A, B) would be too far */
  515. /* > from generalized Schur form; the problem is ill- */
  516. /* > conditioned. */
  517. /* > \endverbatim */
  518. /* Authors: */
  519. /* ======== */
  520. /* > \author Univ. of Tennessee */
  521. /* > \author Univ. of California Berkeley */
  522. /* > \author Univ. of Colorado Denver */
  523. /* > \author NAG Ltd. */
  524. /* > \date June 2017 */
  525. /* > \ingroup complexGEauxiliary */
  526. /* > \par Further Details: */
  527. /* ===================== */
  528. /* > */
  529. /* > In the current code both weak and strong stability tests are */
  530. /* > performed. The user can omit the strong stability test by changing */
  531. /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
  532. /* > details. */
  533. /* > \par Contributors: */
  534. /* ================== */
  535. /* > */
  536. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  537. /* > Umea University, S-901 87 Umea, Sweden. */
  538. /* > \par References: */
  539. /* ================ */
  540. /* > */
  541. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  542. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  543. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  544. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  545. /* > \n */
  546. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  547. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  548. /* > Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
  549. /* > Department of Computing Science, Umea University, S-901 87 Umea, */
  550. /* > Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
  551. /* > Numerical Algorithms, 1996. */
  552. /* > */
  553. /* ===================================================================== */
  554. /* Subroutine */ int ctgex2_(logical *wantq, logical *wantz, integer *n,
  555. complex *a, integer *lda, complex *b, integer *ldb, complex *q,
  556. integer *ldq, complex *z__, integer *ldz, integer *j1, integer *info)
  557. {
  558. /* System generated locals */
  559. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  560. z_offset, i__1, i__2, i__3;
  561. real r__1;
  562. complex q__1, q__2, q__3;
  563. /* Local variables */
  564. logical weak;
  565. complex cdum;
  566. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  567. complex *, integer *, real *, complex *);
  568. complex work[8], f, g;
  569. integer i__, m;
  570. complex s[4] /* was [2][2] */, t[4] /* was [2][2] */;
  571. real scale, cq, sa, sb, cz;
  572. complex sq;
  573. real ss;
  574. extern real slamch_(char *);
  575. real ws;
  576. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  577. *, integer *, complex *, integer *), clartg_(complex *,
  578. complex *, real *, complex *, complex *);
  579. complex sz;
  580. extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
  581. *, real *);
  582. real thresh, smlnum;
  583. logical strong;
  584. real eps, sum;
  585. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  586. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  587. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  588. /* June 2017 */
  589. /* ===================================================================== */
  590. /* Parameter adjustments */
  591. a_dim1 = *lda;
  592. a_offset = 1 + a_dim1 * 1;
  593. a -= a_offset;
  594. b_dim1 = *ldb;
  595. b_offset = 1 + b_dim1 * 1;
  596. b -= b_offset;
  597. q_dim1 = *ldq;
  598. q_offset = 1 + q_dim1 * 1;
  599. q -= q_offset;
  600. z_dim1 = *ldz;
  601. z_offset = 1 + z_dim1 * 1;
  602. z__ -= z_offset;
  603. /* Function Body */
  604. *info = 0;
  605. /* Quick return if possible */
  606. if (*n <= 1) {
  607. return 0;
  608. }
  609. m = 2;
  610. weak = FALSE_;
  611. strong = FALSE_;
  612. /* Make a local copy of selected block in (A, B) */
  613. clacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2);
  614. clacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2);
  615. /* Compute the threshold for testing the acceptance of swapping. */
  616. eps = slamch_("P");
  617. smlnum = slamch_("S") / eps;
  618. scale = 0.f;
  619. sum = 1.f;
  620. clacpy_("Full", &m, &m, s, &c__2, work, &m);
  621. clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
  622. i__1 = (m << 1) * m;
  623. classq_(&i__1, work, &c__1, &scale, &sum);
  624. sa = scale * sqrt(sum);
  625. /* THRES has been changed from */
  626. /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
  627. /* to */
  628. /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
  629. /* on 04/01/10. */
  630. /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
  631. /* Jim Demmel and Guillaume Revy. See forum post 1783. */
  632. /* Computing MAX */
  633. r__1 = eps * 20.f * sa;
  634. thresh = f2cmax(r__1,smlnum);
  635. /* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
  636. /* using Givens rotations and perform the swap tentatively. */
  637. q__2.r = s[3].r * t[0].r - s[3].i * t[0].i, q__2.i = s[3].r * t[0].i + s[
  638. 3].i * t[0].r;
  639. q__3.r = t[3].r * s[0].r - t[3].i * s[0].i, q__3.i = t[3].r * s[0].i + t[
  640. 3].i * s[0].r;
  641. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  642. f.r = q__1.r, f.i = q__1.i;
  643. q__2.r = s[3].r * t[2].r - s[3].i * t[2].i, q__2.i = s[3].r * t[2].i + s[
  644. 3].i * t[2].r;
  645. q__3.r = t[3].r * s[2].r - t[3].i * s[2].i, q__3.i = t[3].r * s[2].i + t[
  646. 3].i * s[2].r;
  647. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  648. g.r = q__1.r, g.i = q__1.i;
  649. sa = c_abs(&s[3]);
  650. sb = c_abs(&t[3]);
  651. clartg_(&g, &f, &cz, &sz, &cdum);
  652. q__1.r = -sz.r, q__1.i = -sz.i;
  653. sz.r = q__1.r, sz.i = q__1.i;
  654. r_cnjg(&q__1, &sz);
  655. crot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &q__1);
  656. r_cnjg(&q__1, &sz);
  657. crot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &q__1);
  658. if (sa >= sb) {
  659. clartg_(s, &s[1], &cq, &sq, &cdum);
  660. } else {
  661. clartg_(t, &t[1], &cq, &sq, &cdum);
  662. }
  663. crot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
  664. crot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
  665. /* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
  666. ws = c_abs(&s[1]) + c_abs(&t[1]);
  667. weak = ws <= thresh;
  668. if (! weak) {
  669. goto L20;
  670. }
  671. if (TRUE_) {
  672. /* Strong stability test: */
  673. /* F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) */
  674. clacpy_("Full", &m, &m, s, &c__2, work, &m);
  675. clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
  676. r_cnjg(&q__2, &sz);
  677. q__1.r = -q__2.r, q__1.i = -q__2.i;
  678. crot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &q__1);
  679. r_cnjg(&q__2, &sz);
  680. q__1.r = -q__2.r, q__1.i = -q__2.i;
  681. crot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &q__1);
  682. q__1.r = -sq.r, q__1.i = -sq.i;
  683. crot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &q__1);
  684. q__1.r = -sq.r, q__1.i = -sq.i;
  685. crot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &q__1);
  686. for (i__ = 1; i__ <= 2; ++i__) {
  687. i__1 = i__ - 1;
  688. i__2 = i__ - 1;
  689. i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
  690. q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3]
  691. .i;
  692. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  693. i__1 = i__ + 1;
  694. i__2 = i__ + 1;
  695. i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
  696. q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3]
  697. .i;
  698. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  699. i__1 = i__ + 3;
  700. i__2 = i__ + 3;
  701. i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
  702. q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3]
  703. .i;
  704. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  705. i__1 = i__ + 5;
  706. i__2 = i__ + 5;
  707. i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
  708. q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3]
  709. .i;
  710. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  711. /* L10: */
  712. }
  713. scale = 0.f;
  714. sum = 1.f;
  715. i__1 = (m << 1) * m;
  716. classq_(&i__1, work, &c__1, &scale, &sum);
  717. ss = scale * sqrt(sum);
  718. strong = ss <= thresh;
  719. if (! strong) {
  720. goto L20;
  721. }
  722. }
  723. /* If the swap is accepted ("weakly" and "strongly"), apply the */
  724. /* equivalence transformations to the original matrix pair (A,B) */
  725. i__1 = *j1 + 1;
  726. r_cnjg(&q__1, &sz);
  727. crot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
  728. c__1, &cz, &q__1);
  729. i__1 = *j1 + 1;
  730. r_cnjg(&q__1, &sz);
  731. crot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
  732. c__1, &cz, &q__1);
  733. i__1 = *n - *j1 + 1;
  734. crot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
  735. &cq, &sq);
  736. i__1 = *n - *j1 + 1;
  737. crot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
  738. &cq, &sq);
  739. /* Set N1 by N2 (2,1) blocks to 0 */
  740. i__1 = *j1 + 1 + *j1 * a_dim1;
  741. a[i__1].r = 0.f, a[i__1].i = 0.f;
  742. i__1 = *j1 + 1 + *j1 * b_dim1;
  743. b[i__1].r = 0.f, b[i__1].i = 0.f;
  744. /* Accumulate transformations into Q and Z if requested. */
  745. if (*wantz) {
  746. r_cnjg(&q__1, &sz);
  747. crot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1],
  748. &c__1, &cz, &q__1);
  749. }
  750. if (*wantq) {
  751. r_cnjg(&q__1, &sq);
  752. crot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
  753. c__1, &cq, &q__1);
  754. }
  755. /* Exit with INFO = 0 if swap was successfully performed. */
  756. return 0;
  757. /* Exit with INFO = 1 if swap was rejected. */
  758. L20:
  759. *info = 1;
  760. return 0;
  761. /* End of CTGEX2 */
  762. } /* ctgex2_ */