You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytri_rook.c 29 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {1.f,0.f};
  381. static complex c_b2 = {0.f,0.f};
  382. static integer c__1 = 1;
  383. /* > \brief \b CSYTRI_ROOK */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CSYTRI_ROOK + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytri_
  390. rook.f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytri_
  393. rook.f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytri_
  396. rook.f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
  402. /* CHARACTER UPLO */
  403. /* INTEGER INFO, LDA, N */
  404. /* INTEGER IPIV( * ) */
  405. /* COMPLEX A( LDA, * ), WORK( * ) */
  406. /* > \par Purpose: */
  407. /* ============= */
  408. /* > */
  409. /* > \verbatim */
  410. /* > */
  411. /* > CSYTRI_ROOK computes the inverse of a complex symmetric */
  412. /* > matrix A using the factorization A = U*D*U**T or A = L*D*L**T */
  413. /* > computed by CSYTRF_ROOK. */
  414. /* > \endverbatim */
  415. /* Arguments: */
  416. /* ========== */
  417. /* > \param[in] UPLO */
  418. /* > \verbatim */
  419. /* > UPLO is CHARACTER*1 */
  420. /* > Specifies whether the details of the factorization are stored */
  421. /* > as an upper or lower triangular matrix. */
  422. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  423. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  424. /* > \endverbatim */
  425. /* > */
  426. /* > \param[in] N */
  427. /* > \verbatim */
  428. /* > N is INTEGER */
  429. /* > The order of the matrix A. N >= 0. */
  430. /* > \endverbatim */
  431. /* > */
  432. /* > \param[in,out] A */
  433. /* > \verbatim */
  434. /* > A is COMPLEX array, dimension (LDA,N) */
  435. /* > On entry, the block diagonal matrix D and the multipliers */
  436. /* > used to obtain the factor U or L as computed by CSYTRF_ROOK. */
  437. /* > */
  438. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  439. /* > matrix. If UPLO = 'U', the upper triangular part of the */
  440. /* > inverse is formed and the part of A below the diagonal is not */
  441. /* > referenced; if UPLO = 'L' the lower triangular part of the */
  442. /* > inverse is formed and the part of A above the diagonal is */
  443. /* > not referenced. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] LDA */
  447. /* > \verbatim */
  448. /* > LDA is INTEGER */
  449. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  450. /* > \endverbatim */
  451. /* > */
  452. /* > \param[in] IPIV */
  453. /* > \verbatim */
  454. /* > IPIV is INTEGER array, dimension (N) */
  455. /* > Details of the interchanges and the block structure of D */
  456. /* > as determined by CSYTRF_ROOK. */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[out] WORK */
  460. /* > \verbatim */
  461. /* > WORK is COMPLEX array, dimension (N) */
  462. /* > \endverbatim */
  463. /* > */
  464. /* > \param[out] INFO */
  465. /* > \verbatim */
  466. /* > INFO is INTEGER */
  467. /* > = 0: successful exit */
  468. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  469. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  470. /* > inverse could not be computed. */
  471. /* > \endverbatim */
  472. /* Authors: */
  473. /* ======== */
  474. /* > \author Univ. of Tennessee */
  475. /* > \author Univ. of California Berkeley */
  476. /* > \author Univ. of Colorado Denver */
  477. /* > \author NAG Ltd. */
  478. /* > \date December 2016 */
  479. /* > \ingroup complexSYcomputational */
  480. /* > \par Contributors: */
  481. /* ================== */
  482. /* > */
  483. /* > \verbatim */
  484. /* > */
  485. /* > December 2016, Igor Kozachenko, */
  486. /* > Computer Science Division, */
  487. /* > University of California, Berkeley */
  488. /* > */
  489. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  490. /* > School of Mathematics, */
  491. /* > University of Manchester */
  492. /* > */
  493. /* > \endverbatim */
  494. /* ===================================================================== */
  495. /* Subroutine */ int csytri_rook_(char *uplo, integer *n, complex *a,
  496. integer *lda, integer *ipiv, complex *work, integer *info)
  497. {
  498. /* System generated locals */
  499. integer a_dim1, a_offset, i__1, i__2, i__3;
  500. complex q__1, q__2, q__3;
  501. /* Local variables */
  502. complex temp, akkp1, d__;
  503. integer k;
  504. complex t;
  505. extern logical lsame_(char *, char *);
  506. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  507. complex *, integer *);
  508. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  509. *, complex *, integer *);
  510. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  511. complex *, integer *);
  512. integer kstep;
  513. logical upper;
  514. extern /* Subroutine */ int csymv_(char *, integer *, complex *, complex *
  515. , integer *, complex *, integer *, complex *, complex *, integer *
  516. );
  517. complex ak;
  518. integer kp;
  519. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  520. complex akp1;
  521. /* -- LAPACK computational routine (version 3.7.0) -- */
  522. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  523. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  524. /* December 2016 */
  525. /* ===================================================================== */
  526. /* Test the input parameters. */
  527. /* Parameter adjustments */
  528. a_dim1 = *lda;
  529. a_offset = 1 + a_dim1 * 1;
  530. a -= a_offset;
  531. --ipiv;
  532. --work;
  533. /* Function Body */
  534. *info = 0;
  535. upper = lsame_(uplo, "U");
  536. if (! upper && ! lsame_(uplo, "L")) {
  537. *info = -1;
  538. } else if (*n < 0) {
  539. *info = -2;
  540. } else if (*lda < f2cmax(1,*n)) {
  541. *info = -4;
  542. }
  543. if (*info != 0) {
  544. i__1 = -(*info);
  545. xerbla_("CSYTRI_ROOK", &i__1, (ftnlen)11);
  546. return 0;
  547. }
  548. /* Quick return if possible */
  549. if (*n == 0) {
  550. return 0;
  551. }
  552. /* Check that the diagonal matrix D is nonsingular. */
  553. if (upper) {
  554. /* Upper triangular storage: examine D from bottom to top */
  555. for (*info = *n; *info >= 1; --(*info)) {
  556. i__1 = *info + *info * a_dim1;
  557. if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
  558. return 0;
  559. }
  560. /* L10: */
  561. }
  562. } else {
  563. /* Lower triangular storage: examine D from top to bottom. */
  564. i__1 = *n;
  565. for (*info = 1; *info <= i__1; ++(*info)) {
  566. i__2 = *info + *info * a_dim1;
  567. if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
  568. return 0;
  569. }
  570. /* L20: */
  571. }
  572. }
  573. *info = 0;
  574. if (upper) {
  575. /* Compute inv(A) from the factorization A = U*D*U**T. */
  576. /* K is the main loop index, increasing from 1 to N in steps of */
  577. /* 1 or 2, depending on the size of the diagonal blocks. */
  578. k = 1;
  579. L30:
  580. /* If K > N, exit from loop. */
  581. if (k > *n) {
  582. goto L40;
  583. }
  584. if (ipiv[k] > 0) {
  585. /* 1 x 1 diagonal block */
  586. /* Invert the diagonal block. */
  587. i__1 = k + k * a_dim1;
  588. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  589. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  590. /* Compute column K of the inverse. */
  591. if (k > 1) {
  592. i__1 = k - 1;
  593. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  594. i__1 = k - 1;
  595. q__1.r = -1.f, q__1.i = 0.f;
  596. csymv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  597. &c_b2, &a[k * a_dim1 + 1], &c__1);
  598. i__1 = k + k * a_dim1;
  599. i__2 = k + k * a_dim1;
  600. i__3 = k - 1;
  601. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  602. c__1);
  603. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  604. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  605. }
  606. kstep = 1;
  607. } else {
  608. /* 2 x 2 diagonal block */
  609. /* Invert the diagonal block. */
  610. i__1 = k + (k + 1) * a_dim1;
  611. t.r = a[i__1].r, t.i = a[i__1].i;
  612. c_div(&q__1, &a[k + k * a_dim1], &t);
  613. ak.r = q__1.r, ak.i = q__1.i;
  614. c_div(&q__1, &a[k + 1 + (k + 1) * a_dim1], &t);
  615. akp1.r = q__1.r, akp1.i = q__1.i;
  616. c_div(&q__1, &a[k + (k + 1) * a_dim1], &t);
  617. akkp1.r = q__1.r, akkp1.i = q__1.i;
  618. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r * akp1.i +
  619. ak.i * akp1.r;
  620. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  621. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i + t.i
  622. * q__2.r;
  623. d__.r = q__1.r, d__.i = q__1.i;
  624. i__1 = k + k * a_dim1;
  625. c_div(&q__1, &akp1, &d__);
  626. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  627. i__1 = k + 1 + (k + 1) * a_dim1;
  628. c_div(&q__1, &ak, &d__);
  629. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  630. i__1 = k + (k + 1) * a_dim1;
  631. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  632. c_div(&q__1, &q__2, &d__);
  633. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  634. /* Compute columns K and K+1 of the inverse. */
  635. if (k > 1) {
  636. i__1 = k - 1;
  637. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  638. i__1 = k - 1;
  639. q__1.r = -1.f, q__1.i = 0.f;
  640. csymv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  641. &c_b2, &a[k * a_dim1 + 1], &c__1);
  642. i__1 = k + k * a_dim1;
  643. i__2 = k + k * a_dim1;
  644. i__3 = k - 1;
  645. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  646. c__1);
  647. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  648. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  649. i__1 = k + (k + 1) * a_dim1;
  650. i__2 = k + (k + 1) * a_dim1;
  651. i__3 = k - 1;
  652. cdotu_(&q__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
  653. a_dim1 + 1], &c__1);
  654. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  655. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  656. i__1 = k - 1;
  657. ccopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
  658. c__1);
  659. i__1 = k - 1;
  660. q__1.r = -1.f, q__1.i = 0.f;
  661. csymv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  662. &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
  663. i__1 = k + 1 + (k + 1) * a_dim1;
  664. i__2 = k + 1 + (k + 1) * a_dim1;
  665. i__3 = k - 1;
  666. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
  667. , &c__1);
  668. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  669. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  670. }
  671. kstep = 2;
  672. }
  673. if (kstep == 1) {
  674. /* Interchange rows and columns K and IPIV(K) in the leading */
  675. /* submatrix A(1:k+1,1:k+1) */
  676. kp = ipiv[k];
  677. if (kp != k) {
  678. if (kp > 1) {
  679. i__1 = kp - 1;
  680. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  681. 1], &c__1);
  682. }
  683. i__1 = k - kp - 1;
  684. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  685. * a_dim1], lda);
  686. i__1 = k + k * a_dim1;
  687. temp.r = a[i__1].r, temp.i = a[i__1].i;
  688. i__1 = k + k * a_dim1;
  689. i__2 = kp + kp * a_dim1;
  690. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  691. i__1 = kp + kp * a_dim1;
  692. a[i__1].r = temp.r, a[i__1].i = temp.i;
  693. }
  694. } else {
  695. /* Interchange rows and columns K and K+1 with -IPIV(K) and */
  696. /* -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1) */
  697. kp = -ipiv[k];
  698. if (kp != k) {
  699. if (kp > 1) {
  700. i__1 = kp - 1;
  701. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  702. 1], &c__1);
  703. }
  704. i__1 = k - kp - 1;
  705. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  706. * a_dim1], lda);
  707. i__1 = k + k * a_dim1;
  708. temp.r = a[i__1].r, temp.i = a[i__1].i;
  709. i__1 = k + k * a_dim1;
  710. i__2 = kp + kp * a_dim1;
  711. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  712. i__1 = kp + kp * a_dim1;
  713. a[i__1].r = temp.r, a[i__1].i = temp.i;
  714. i__1 = k + (k + 1) * a_dim1;
  715. temp.r = a[i__1].r, temp.i = a[i__1].i;
  716. i__1 = k + (k + 1) * a_dim1;
  717. i__2 = kp + (k + 1) * a_dim1;
  718. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  719. i__1 = kp + (k + 1) * a_dim1;
  720. a[i__1].r = temp.r, a[i__1].i = temp.i;
  721. }
  722. ++k;
  723. kp = -ipiv[k];
  724. if (kp != k) {
  725. if (kp > 1) {
  726. i__1 = kp - 1;
  727. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  728. 1], &c__1);
  729. }
  730. i__1 = k - kp - 1;
  731. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  732. * a_dim1], lda);
  733. i__1 = k + k * a_dim1;
  734. temp.r = a[i__1].r, temp.i = a[i__1].i;
  735. i__1 = k + k * a_dim1;
  736. i__2 = kp + kp * a_dim1;
  737. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  738. i__1 = kp + kp * a_dim1;
  739. a[i__1].r = temp.r, a[i__1].i = temp.i;
  740. }
  741. }
  742. ++k;
  743. goto L30;
  744. L40:
  745. ;
  746. } else {
  747. /* Compute inv(A) from the factorization A = L*D*L**T. */
  748. /* K is the main loop index, increasing from 1 to N in steps of */
  749. /* 1 or 2, depending on the size of the diagonal blocks. */
  750. k = *n;
  751. L50:
  752. /* If K < 1, exit from loop. */
  753. if (k < 1) {
  754. goto L60;
  755. }
  756. if (ipiv[k] > 0) {
  757. /* 1 x 1 diagonal block */
  758. /* Invert the diagonal block. */
  759. i__1 = k + k * a_dim1;
  760. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  761. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  762. /* Compute column K of the inverse. */
  763. if (k < *n) {
  764. i__1 = *n - k;
  765. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  766. i__1 = *n - k;
  767. q__1.r = -1.f, q__1.i = 0.f;
  768. csymv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  769. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  770. i__1 = k + k * a_dim1;
  771. i__2 = k + k * a_dim1;
  772. i__3 = *n - k;
  773. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  774. &c__1);
  775. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  776. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  777. }
  778. kstep = 1;
  779. } else {
  780. /* 2 x 2 diagonal block */
  781. /* Invert the diagonal block. */
  782. i__1 = k + (k - 1) * a_dim1;
  783. t.r = a[i__1].r, t.i = a[i__1].i;
  784. c_div(&q__1, &a[k - 1 + (k - 1) * a_dim1], &t);
  785. ak.r = q__1.r, ak.i = q__1.i;
  786. c_div(&q__1, &a[k + k * a_dim1], &t);
  787. akp1.r = q__1.r, akp1.i = q__1.i;
  788. c_div(&q__1, &a[k + (k - 1) * a_dim1], &t);
  789. akkp1.r = q__1.r, akkp1.i = q__1.i;
  790. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r * akp1.i +
  791. ak.i * akp1.r;
  792. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  793. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i + t.i
  794. * q__2.r;
  795. d__.r = q__1.r, d__.i = q__1.i;
  796. i__1 = k - 1 + (k - 1) * a_dim1;
  797. c_div(&q__1, &akp1, &d__);
  798. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  799. i__1 = k + k * a_dim1;
  800. c_div(&q__1, &ak, &d__);
  801. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  802. i__1 = k + (k - 1) * a_dim1;
  803. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  804. c_div(&q__1, &q__2, &d__);
  805. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  806. /* Compute columns K-1 and K of the inverse. */
  807. if (k < *n) {
  808. i__1 = *n - k;
  809. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  810. i__1 = *n - k;
  811. q__1.r = -1.f, q__1.i = 0.f;
  812. csymv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  813. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  814. i__1 = k + k * a_dim1;
  815. i__2 = k + k * a_dim1;
  816. i__3 = *n - k;
  817. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  818. &c__1);
  819. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  820. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  821. i__1 = k + (k - 1) * a_dim1;
  822. i__2 = k + (k - 1) * a_dim1;
  823. i__3 = *n - k;
  824. cdotu_(&q__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
  825. + (k - 1) * a_dim1], &c__1);
  826. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  827. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  828. i__1 = *n - k;
  829. ccopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
  830. c__1);
  831. i__1 = *n - k;
  832. q__1.r = -1.f, q__1.i = 0.f;
  833. csymv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  834. &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
  835. &c__1);
  836. i__1 = k - 1 + (k - 1) * a_dim1;
  837. i__2 = k - 1 + (k - 1) * a_dim1;
  838. i__3 = *n - k;
  839. cdotu_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
  840. a_dim1], &c__1);
  841. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  842. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  843. }
  844. kstep = 2;
  845. }
  846. if (kstep == 1) {
  847. /* Interchange rows and columns K and IPIV(K) in the trailing */
  848. /* submatrix A(k-1:n,k-1:n) */
  849. kp = ipiv[k];
  850. if (kp != k) {
  851. if (kp < *n) {
  852. i__1 = *n - kp;
  853. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  854. kp * a_dim1], &c__1);
  855. }
  856. i__1 = kp - k - 1;
  857. cswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  858. a_dim1], lda);
  859. i__1 = k + k * a_dim1;
  860. temp.r = a[i__1].r, temp.i = a[i__1].i;
  861. i__1 = k + k * a_dim1;
  862. i__2 = kp + kp * a_dim1;
  863. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  864. i__1 = kp + kp * a_dim1;
  865. a[i__1].r = temp.r, a[i__1].i = temp.i;
  866. }
  867. } else {
  868. /* Interchange rows and columns K and K-1 with -IPIV(K) and */
  869. /* -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n) */
  870. kp = -ipiv[k];
  871. if (kp != k) {
  872. if (kp < *n) {
  873. i__1 = *n - kp;
  874. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  875. kp * a_dim1], &c__1);
  876. }
  877. i__1 = kp - k - 1;
  878. cswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  879. a_dim1], lda);
  880. i__1 = k + k * a_dim1;
  881. temp.r = a[i__1].r, temp.i = a[i__1].i;
  882. i__1 = k + k * a_dim1;
  883. i__2 = kp + kp * a_dim1;
  884. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  885. i__1 = kp + kp * a_dim1;
  886. a[i__1].r = temp.r, a[i__1].i = temp.i;
  887. i__1 = k + (k - 1) * a_dim1;
  888. temp.r = a[i__1].r, temp.i = a[i__1].i;
  889. i__1 = k + (k - 1) * a_dim1;
  890. i__2 = kp + (k - 1) * a_dim1;
  891. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  892. i__1 = kp + (k - 1) * a_dim1;
  893. a[i__1].r = temp.r, a[i__1].i = temp.i;
  894. }
  895. --k;
  896. kp = -ipiv[k];
  897. if (kp != k) {
  898. if (kp < *n) {
  899. i__1 = *n - kp;
  900. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  901. kp * a_dim1], &c__1);
  902. }
  903. i__1 = kp - k - 1;
  904. cswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  905. a_dim1], lda);
  906. i__1 = k + k * a_dim1;
  907. temp.r = a[i__1].r, temp.i = a[i__1].i;
  908. i__1 = k + k * a_dim1;
  909. i__2 = kp + kp * a_dim1;
  910. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  911. i__1 = kp + kp * a_dim1;
  912. a[i__1].r = temp.r, a[i__1].i = temp.i;
  913. }
  914. }
  915. --k;
  916. goto L50;
  917. L60:
  918. ;
  919. }
  920. return 0;
  921. /* End of CSYTRI_ROOK */
  922. } /* csytri_rook__ */