You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytrf_aa.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c_n1 = -1;
  382. static complex c_b15 = {1.f,0.f};
  383. static complex c_b19 = {-1.f,0.f};
  384. /* > \brief \b CSYTRF_AA */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download CSYTRF_AA + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrf_
  391. aa.f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrf_
  394. aa.f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrf_
  397. aa.f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
  403. /* CHARACTER UPLO */
  404. /* INTEGER N, LDA, LWORK, INFO */
  405. /* INTEGER IPIV( * ) */
  406. /* COMPLEX A( LDA, * ), WORK( * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > CSYTRF_AA computes the factorization of a complex symmetric matrix A */
  413. /* > using the Aasen's algorithm. The form of the factorization is */
  414. /* > */
  415. /* > A = U**T*T*U or A = L*T*L**T */
  416. /* > */
  417. /* > where U (or L) is a product of permutation and unit upper (lower) */
  418. /* > triangular matrices, and T is a complex symmetric tridiagonal matrix. */
  419. /* > */
  420. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  421. /* > \endverbatim */
  422. /* Arguments: */
  423. /* ========== */
  424. /* > \param[in] UPLO */
  425. /* > \verbatim */
  426. /* > UPLO is CHARACTER*1 */
  427. /* > = 'U': Upper triangle of A is stored; */
  428. /* > = 'L': Lower triangle of A is stored. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in] N */
  432. /* > \verbatim */
  433. /* > N is INTEGER */
  434. /* > The order of the matrix A. N >= 0. */
  435. /* > \endverbatim */
  436. /* > */
  437. /* > \param[in,out] A */
  438. /* > \verbatim */
  439. /* > A is COMPLEX array, dimension (LDA,N) */
  440. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  441. /* > N-by-N upper triangular part of A contains the upper */
  442. /* > triangular part of the matrix A, and the strictly lower */
  443. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  444. /* > leading N-by-N lower triangular part of A contains the lower */
  445. /* > triangular part of the matrix A, and the strictly upper */
  446. /* > triangular part of A is not referenced. */
  447. /* > */
  448. /* > On exit, the tridiagonal matrix is stored in the diagonals */
  449. /* > and the subdiagonals of A just below (or above) the diagonals, */
  450. /* > and L is stored below (or above) the subdiaonals, when UPLO */
  451. /* > is 'L' (or 'U'). */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in] LDA */
  455. /* > \verbatim */
  456. /* > LDA is INTEGER */
  457. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[out] IPIV */
  461. /* > \verbatim */
  462. /* > IPIV is INTEGER array, dimension (N) */
  463. /* > On exit, it contains the details of the interchanges, i.e., */
  464. /* > the row and column k of A were interchanged with the */
  465. /* > row and column IPIV(k). */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[out] WORK */
  469. /* > \verbatim */
  470. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  471. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in] LWORK */
  475. /* > \verbatim */
  476. /* > LWORK is INTEGER */
  477. /* > The length of WORK. LWORK >= MAX(1,2*N). For optimum performance */
  478. /* > LWORK >= N*(1+NB), where NB is the optimal blocksize. */
  479. /* > */
  480. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  481. /* > only calculates the optimal size of the WORK array, returns */
  482. /* > this value as the first entry of the WORK array, and no error */
  483. /* > message related to LWORK is issued by XERBLA. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[out] INFO */
  487. /* > \verbatim */
  488. /* > INFO is INTEGER */
  489. /* > = 0: successful exit */
  490. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  491. /* > \endverbatim */
  492. /* Authors: */
  493. /* ======== */
  494. /* > \author Univ. of Tennessee */
  495. /* > \author Univ. of California Berkeley */
  496. /* > \author Univ. of Colorado Denver */
  497. /* > \author NAG Ltd. */
  498. /* > \date November 2017 */
  499. /* > \ingroup complexSYcomputational */
  500. /* ===================================================================== */
  501. /* Subroutine */ int csytrf_aa_(char *uplo, integer *n, complex *a, integer *
  502. lda, integer *ipiv, complex *work, integer *lwork, integer *info)
  503. {
  504. /* System generated locals */
  505. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  506. /* Local variables */
  507. integer j;
  508. complex alpha;
  509. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  510. integer *), cgemm_(char *, char *, integer *, integer *, integer *
  511. , complex *, complex *, integer *, complex *, integer *, complex *
  512. , complex *, integer *);
  513. extern logical lsame_(char *, char *);
  514. extern /* Subroutine */ int clasyf_aa_(char *, integer *, integer *,
  515. integer *, complex *, integer *, integer *, complex *, integer *,
  516. complex *), cgemv_(char *, integer *, integer *, complex *
  517. , complex *, integer *, complex *, integer *, complex *, complex *
  518. , integer *), cswap_(integer *, complex *, integer *,
  519. complex *, integer *), ccopy_(integer *, complex *, integer *,
  520. complex *, integer *);
  521. logical upper;
  522. integer k1, k2, j1, j2, j3, jb, nb, mj, nj;
  523. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  524. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  525. integer *, integer *, ftnlen, ftnlen);
  526. integer lwkopt;
  527. logical lquery;
  528. /* -- LAPACK computational routine (version 3.8.0) -- */
  529. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  530. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  531. /* November 2017 */
  532. /* ===================================================================== */
  533. /* Determine the block size */
  534. /* Parameter adjustments */
  535. a_dim1 = *lda;
  536. a_offset = 1 + a_dim1 * 1;
  537. a -= a_offset;
  538. --ipiv;
  539. --work;
  540. /* Function Body */
  541. nb = ilaenv_(&c__1, "CSYTRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9,
  542. (ftnlen)1);
  543. /* Test the input parameters. */
  544. *info = 0;
  545. upper = lsame_(uplo, "U");
  546. lquery = *lwork == -1;
  547. if (! upper && ! lsame_(uplo, "L")) {
  548. *info = -1;
  549. } else if (*n < 0) {
  550. *info = -2;
  551. } else if (*lda < f2cmax(1,*n)) {
  552. *info = -4;
  553. } else /* if(complicated condition) */ {
  554. /* Computing MAX */
  555. i__1 = 1, i__2 = *n << 1;
  556. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  557. *info = -7;
  558. }
  559. }
  560. if (*info == 0) {
  561. lwkopt = (nb + 1) * *n;
  562. work[1].r = (real) lwkopt, work[1].i = 0.f;
  563. }
  564. if (*info != 0) {
  565. i__1 = -(*info);
  566. xerbla_("CSYTRF_AA", &i__1, (ftnlen)9);
  567. return 0;
  568. } else if (lquery) {
  569. return 0;
  570. }
  571. /* Quick return */
  572. if (*n == 0) {
  573. return 0;
  574. }
  575. ipiv[1] = 1;
  576. if (*n == 1) {
  577. return 0;
  578. }
  579. /* Adjust block size based on the workspace size */
  580. if (*lwork < (nb + 1) * *n) {
  581. nb = (*lwork - *n) / *n;
  582. }
  583. if (upper) {
  584. /* ..................................................... */
  585. /* Factorize A as U**T*D*U using the upper triangle of A */
  586. /* ..................................................... */
  587. /* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
  588. ccopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
  589. /* J is the main loop index, increasing from 1 to N in steps of */
  590. /* JB, where JB is the number of columns factorized by CLASYF; */
  591. /* JB is either NB, or N-J+1 for the last block */
  592. j = 0;
  593. L10:
  594. if (j >= *n) {
  595. goto L20;
  596. }
  597. /* each step of the main loop */
  598. /* J is the last column of the previous panel */
  599. /* J1 is the first column of the current panel */
  600. /* K1 identifies if the previous column of the panel has been */
  601. /* explicitly stored, e.g., K1=1 for the first panel, and */
  602. /* K1=0 for the rest */
  603. j1 = j + 1;
  604. /* Computing MIN */
  605. i__1 = *n - j1 + 1;
  606. jb = f2cmin(i__1,nb);
  607. k1 = f2cmax(1,j) - j;
  608. /* Panel factorization */
  609. i__1 = 2 - k1;
  610. i__2 = *n - j;
  611. clasyf_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1],
  612. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  613. ;
  614. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  615. /* Computing MIN */
  616. i__2 = *n, i__3 = j + jb + 1;
  617. i__1 = f2cmin(i__2,i__3);
  618. for (j2 = j + 2; j2 <= i__1; ++j2) {
  619. ipiv[j2] += j;
  620. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  621. i__2 = j1 - k1 - 2;
  622. cswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] *
  623. a_dim1 + 1], &c__1);
  624. }
  625. }
  626. j += jb;
  627. /* Trailing submatrix update, where */
  628. /* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
  629. /* WORK stores the current block of the auxiriarly matrix H */
  630. if (j < *n) {
  631. /* If first panel and JB=1 (NB=1), then nothing to do */
  632. if (j1 > 1 || jb > 1) {
  633. /* Merge rank-1 update with BLAS-3 update */
  634. i__1 = j + (j + 1) * a_dim1;
  635. alpha.r = a[i__1].r, alpha.i = a[i__1].i;
  636. i__1 = j + (j + 1) * a_dim1;
  637. a[i__1].r = 1.f, a[i__1].i = 0.f;
  638. i__1 = *n - j;
  639. ccopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1
  640. - j1 + 1 + jb * *n], &c__1);
  641. i__1 = *n - j;
  642. cscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  643. /* K1 identifies if the previous column of the panel has been */
  644. /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
  645. /* while K1=0 and K2=1 for the rest */
  646. if (j1 > 1) {
  647. /* Not first panel */
  648. k2 = 1;
  649. } else {
  650. /* First panel */
  651. k2 = 0;
  652. /* First update skips the first column */
  653. --jb;
  654. }
  655. i__1 = *n;
  656. i__2 = nb;
  657. for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 +=
  658. i__2) {
  659. /* Computing MIN */
  660. i__3 = nb, i__4 = *n - j2 + 1;
  661. nj = f2cmin(i__3,i__4);
  662. /* Update (J2, J2) diagonal block with CGEMV */
  663. j3 = j2;
  664. for (mj = nj - 1; mj >= 1; --mj) {
  665. i__3 = jb + 1;
  666. cgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
  667. j1 + 1 + k1 * *n], n, &a[j1 - k2 + j3 *
  668. a_dim1], &c__1, &c_b15, &a[j3 + j3 * a_dim1],
  669. lda);
  670. ++j3;
  671. }
  672. /* Update off-diagonal block of J2-th block row with CGEMM */
  673. i__3 = *n - j3 + 1;
  674. i__4 = jb + 1;
  675. cgemm_("Transpose", "Transpose", &nj, &i__3, &i__4, &
  676. c_b19, &a[j1 - k2 + j2 * a_dim1], lda, &work[j3 -
  677. j1 + 1 + k1 * *n], n, &c_b15, &a[j2 + j3 * a_dim1]
  678. , lda);
  679. }
  680. /* Recover T( J, J+1 ) */
  681. i__2 = j + (j + 1) * a_dim1;
  682. a[i__2].r = alpha.r, a[i__2].i = alpha.i;
  683. }
  684. /* WORK(J+1, 1) stores H(J+1, 1) */
  685. i__2 = *n - j;
  686. ccopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
  687. }
  688. goto L10;
  689. } else {
  690. /* ..................................................... */
  691. /* Factorize A as L*D*L**T using the lower triangle of A */
  692. /* ..................................................... */
  693. /* copy first column A(1:N, 1) into H(1:N, 1) */
  694. /* (stored in WORK(1:N)) */
  695. ccopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
  696. /* J is the main loop index, increasing from 1 to N in steps of */
  697. /* JB, where JB is the number of columns factorized by CLASYF; */
  698. /* JB is either NB, or N-J+1 for the last block */
  699. j = 0;
  700. L11:
  701. if (j >= *n) {
  702. goto L20;
  703. }
  704. /* each step of the main loop */
  705. /* J is the last column of the previous panel */
  706. /* J1 is the first column of the current panel */
  707. /* K1 identifies if the previous column of the panel has been */
  708. /* explicitly stored, e.g., K1=1 for the first panel, and */
  709. /* K1=0 for the rest */
  710. j1 = j + 1;
  711. /* Computing MIN */
  712. i__2 = *n - j1 + 1;
  713. jb = f2cmin(i__2,nb);
  714. k1 = f2cmax(1,j) - j;
  715. /* Panel factorization */
  716. i__2 = 2 - k1;
  717. i__1 = *n - j;
  718. clasyf_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1],
  719. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  720. ;
  721. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  722. /* Computing MIN */
  723. i__1 = *n, i__3 = j + jb + 1;
  724. i__2 = f2cmin(i__1,i__3);
  725. for (j2 = j + 2; j2 <= i__2; ++j2) {
  726. ipiv[j2] += j;
  727. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  728. i__1 = j1 - k1 - 2;
  729. cswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1],
  730. lda);
  731. }
  732. }
  733. j += jb;
  734. /* Trailing submatrix update, where */
  735. /* A(J2+1, J1-1) stores L(J2+1, J1) and */
  736. /* WORK(J2+1, 1) stores H(J2+1, 1) */
  737. if (j < *n) {
  738. /* if first panel and JB=1 (NB=1), then nothing to do */
  739. if (j1 > 1 || jb > 1) {
  740. /* Merge rank-1 update with BLAS-3 update */
  741. i__2 = j + 1 + j * a_dim1;
  742. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  743. i__2 = j + 1 + j * a_dim1;
  744. a[i__2].r = 1.f, a[i__2].i = 0.f;
  745. i__2 = *n - j;
  746. ccopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j +
  747. 1 - j1 + 1 + jb * *n], &c__1);
  748. i__2 = *n - j;
  749. cscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  750. /* K1 identifies if the previous column of the panel has been */
  751. /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
  752. /* while K1=0 and K2=1 for the rest */
  753. if (j1 > 1) {
  754. /* Not first panel */
  755. k2 = 1;
  756. } else {
  757. /* First panel */
  758. k2 = 0;
  759. /* First update skips the first column */
  760. --jb;
  761. }
  762. i__2 = *n;
  763. i__1 = nb;
  764. for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 +=
  765. i__1) {
  766. /* Computing MIN */
  767. i__3 = nb, i__4 = *n - j2 + 1;
  768. nj = f2cmin(i__3,i__4);
  769. /* Update (J2, J2) diagonal block with CGEMV */
  770. j3 = j2;
  771. for (mj = nj - 1; mj >= 1; --mj) {
  772. i__3 = jb + 1;
  773. cgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
  774. j1 + 1 + k1 * *n], n, &a[j3 + (j1 - k2) *
  775. a_dim1], lda, &c_b15, &a[j3 + j3 * a_dim1], &
  776. c__1);
  777. ++j3;
  778. }
  779. /* Update off-diagonal block in J2-th block column with CGEMM */
  780. i__3 = *n - j3 + 1;
  781. i__4 = jb + 1;
  782. cgemm_("No transpose", "Transpose", &i__3, &nj, &i__4, &
  783. c_b19, &work[j3 - j1 + 1 + k1 * *n], n, &a[j2 + (
  784. j1 - k2) * a_dim1], lda, &c_b15, &a[j3 + j2 *
  785. a_dim1], lda);
  786. }
  787. /* Recover T( J+1, J ) */
  788. i__1 = j + 1 + j * a_dim1;
  789. a[i__1].r = alpha.r, a[i__1].i = alpha.i;
  790. }
  791. /* WORK(J+1, 1) stores H(J+1, 1) */
  792. i__1 = *n - j;
  793. ccopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
  794. c__1);
  795. }
  796. goto L11;
  797. }
  798. L20:
  799. return 0;
  800. /* End of CSYTRF_AA */
  801. } /* csytrf_aa__ */