You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstein.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__2 = 2;
  381. static integer c__1 = 1;
  382. static integer c_n1 = -1;
  383. /* > \brief \b CSTEIN */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CSTEIN + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstein.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstein.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstein.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, */
  402. /* IWORK, IFAIL, INFO ) */
  403. /* INTEGER INFO, LDZ, M, N */
  404. /* INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ), */
  405. /* $ IWORK( * ) */
  406. /* REAL D( * ), E( * ), W( * ), WORK( * ) */
  407. /* COMPLEX Z( LDZ, * ) */
  408. /* > \par Purpose: */
  409. /* ============= */
  410. /* > */
  411. /* > \verbatim */
  412. /* > */
  413. /* > CSTEIN computes the eigenvectors of a real symmetric tridiagonal */
  414. /* > matrix T corresponding to specified eigenvalues, using inverse */
  415. /* > iteration. */
  416. /* > */
  417. /* > The maximum number of iterations allowed for each eigenvector is */
  418. /* > specified by an internal parameter MAXITS (currently set to 5). */
  419. /* > */
  420. /* > Although the eigenvectors are real, they are stored in a complex */
  421. /* > array, which may be passed to CUNMTR or CUPMTR for back */
  422. /* > transformation to the eigenvectors of a complex Hermitian matrix */
  423. /* > which was reduced to tridiagonal form. */
  424. /* > */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] N */
  429. /* > \verbatim */
  430. /* > N is INTEGER */
  431. /* > The order of the matrix. N >= 0. */
  432. /* > \endverbatim */
  433. /* > */
  434. /* > \param[in] D */
  435. /* > \verbatim */
  436. /* > D is REAL array, dimension (N) */
  437. /* > The n diagonal elements of the tridiagonal matrix T. */
  438. /* > \endverbatim */
  439. /* > */
  440. /* > \param[in] E */
  441. /* > \verbatim */
  442. /* > E is REAL array, dimension (N-1) */
  443. /* > The (n-1) subdiagonal elements of the tridiagonal matrix */
  444. /* > T, stored in elements 1 to N-1. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in] M */
  448. /* > \verbatim */
  449. /* > M is INTEGER */
  450. /* > The number of eigenvectors to be found. 0 <= M <= N. */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in] W */
  454. /* > \verbatim */
  455. /* > W is REAL array, dimension (N) */
  456. /* > The first M elements of W contain the eigenvalues for */
  457. /* > which eigenvectors are to be computed. The eigenvalues */
  458. /* > should be grouped by split-off block and ordered from */
  459. /* > smallest to largest within the block. ( The output array */
  460. /* > W from SSTEBZ with ORDER = 'B' is expected here. ) */
  461. /* > \endverbatim */
  462. /* > */
  463. /* > \param[in] IBLOCK */
  464. /* > \verbatim */
  465. /* > IBLOCK is INTEGER array, dimension (N) */
  466. /* > The submatrix indices associated with the corresponding */
  467. /* > eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
  468. /* > the first submatrix from the top, =2 if W(i) belongs to */
  469. /* > the second submatrix, etc. ( The output array IBLOCK */
  470. /* > from SSTEBZ is expected here. ) */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] ISPLIT */
  474. /* > \verbatim */
  475. /* > ISPLIT is INTEGER array, dimension (N) */
  476. /* > The splitting points, at which T breaks up into submatrices. */
  477. /* > The first submatrix consists of rows/columns 1 to */
  478. /* > ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
  479. /* > through ISPLIT( 2 ), etc. */
  480. /* > ( The output array ISPLIT from SSTEBZ is expected here. ) */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[out] Z */
  484. /* > \verbatim */
  485. /* > Z is COMPLEX array, dimension (LDZ, M) */
  486. /* > The computed eigenvectors. The eigenvector associated */
  487. /* > with the eigenvalue W(i) is stored in the i-th column of */
  488. /* > Z. Any vector which fails to converge is set to its current */
  489. /* > iterate after MAXITS iterations. */
  490. /* > The imaginary parts of the eigenvectors are set to zero. */
  491. /* > \endverbatim */
  492. /* > */
  493. /* > \param[in] LDZ */
  494. /* > \verbatim */
  495. /* > LDZ is INTEGER */
  496. /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
  497. /* > \endverbatim */
  498. /* > */
  499. /* > \param[out] WORK */
  500. /* > \verbatim */
  501. /* > WORK is REAL array, dimension (5*N) */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[out] IWORK */
  505. /* > \verbatim */
  506. /* > IWORK is INTEGER array, dimension (N) */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[out] IFAIL */
  510. /* > \verbatim */
  511. /* > IFAIL is INTEGER array, dimension (M) */
  512. /* > On normal exit, all elements of IFAIL are zero. */
  513. /* > If one or more eigenvectors fail to converge after */
  514. /* > MAXITS iterations, then their indices are stored in */
  515. /* > array IFAIL. */
  516. /* > \endverbatim */
  517. /* > */
  518. /* > \param[out] INFO */
  519. /* > \verbatim */
  520. /* > INFO is INTEGER */
  521. /* > = 0: successful exit */
  522. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  523. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  524. /* > in MAXITS iterations. Their indices are stored in */
  525. /* > array IFAIL. */
  526. /* > \endverbatim */
  527. /* > \par Internal Parameters: */
  528. /* ========================= */
  529. /* > */
  530. /* > \verbatim */
  531. /* > MAXITS INTEGER, default = 5 */
  532. /* > The maximum number of iterations performed. */
  533. /* > */
  534. /* > EXTRA INTEGER, default = 2 */
  535. /* > The number of iterations performed after norm growth */
  536. /* > criterion is satisfied, should be at least 1. */
  537. /* > \endverbatim */
  538. /* Authors: */
  539. /* ======== */
  540. /* > \author Univ. of Tennessee */
  541. /* > \author Univ. of California Berkeley */
  542. /* > \author Univ. of Colorado Denver */
  543. /* > \author NAG Ltd. */
  544. /* > \date December 2016 */
  545. /* > \ingroup complexOTHERcomputational */
  546. /* ===================================================================== */
  547. /* Subroutine */ int cstein_(integer *n, real *d__, real *e, integer *m, real
  548. *w, integer *iblock, integer *isplit, complex *z__, integer *ldz,
  549. real *work, integer *iwork, integer *ifail, integer *info)
  550. {
  551. /* System generated locals */
  552. integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  553. real r__1, r__2, r__3, r__4, r__5;
  554. complex q__1;
  555. /* Local variables */
  556. integer jblk, nblk, jmax;
  557. extern real snrm2_(integer *, real *, integer *);
  558. integer i__, j, iseed[4], gpind, iinfo;
  559. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  560. integer b1, j1;
  561. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  562. integer *);
  563. real ortol;
  564. integer indrv1, indrv2, indrv3, indrv4, indrv5, bn, jr;
  565. real xj;
  566. extern real slamch_(char *);
  567. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slagtf_(
  568. integer *, real *, real *, real *, real *, real *, real *,
  569. integer *, integer *);
  570. integer nrmchk;
  571. extern integer isamax_(integer *, real *, integer *);
  572. extern /* Subroutine */ int slagts_(integer *, integer *, real *, real *,
  573. real *, real *, integer *, real *, real *, integer *);
  574. integer blksiz;
  575. real onenrm, pertol;
  576. extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real
  577. *);
  578. real stpcrt, scl, eps, ctr, sep, nrm, tol;
  579. integer its;
  580. real xjm, eps1;
  581. /* -- LAPACK computational routine (version 3.7.0) -- */
  582. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  583. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  584. /* December 2016 */
  585. /* ===================================================================== */
  586. /* Test the input parameters. */
  587. /* Parameter adjustments */
  588. --d__;
  589. --e;
  590. --w;
  591. --iblock;
  592. --isplit;
  593. z_dim1 = *ldz;
  594. z_offset = 1 + z_dim1 * 1;
  595. z__ -= z_offset;
  596. --work;
  597. --iwork;
  598. --ifail;
  599. /* Function Body */
  600. *info = 0;
  601. i__1 = *m;
  602. for (i__ = 1; i__ <= i__1; ++i__) {
  603. ifail[i__] = 0;
  604. /* L10: */
  605. }
  606. if (*n < 0) {
  607. *info = -1;
  608. } else if (*m < 0 || *m > *n) {
  609. *info = -4;
  610. } else if (*ldz < f2cmax(1,*n)) {
  611. *info = -9;
  612. } else {
  613. i__1 = *m;
  614. for (j = 2; j <= i__1; ++j) {
  615. if (iblock[j] < iblock[j - 1]) {
  616. *info = -6;
  617. goto L30;
  618. }
  619. if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
  620. *info = -5;
  621. goto L30;
  622. }
  623. /* L20: */
  624. }
  625. L30:
  626. ;
  627. }
  628. if (*info != 0) {
  629. i__1 = -(*info);
  630. xerbla_("CSTEIN", &i__1, (ftnlen)6);
  631. return 0;
  632. }
  633. /* Quick return if possible */
  634. if (*n == 0 || *m == 0) {
  635. return 0;
  636. } else if (*n == 1) {
  637. i__1 = z_dim1 + 1;
  638. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  639. return 0;
  640. }
  641. /* Get machine constants. */
  642. eps = slamch_("Precision");
  643. /* Initialize seed for random number generator SLARNV. */
  644. for (i__ = 1; i__ <= 4; ++i__) {
  645. iseed[i__ - 1] = 1;
  646. /* L40: */
  647. }
  648. /* Initialize pointers. */
  649. indrv1 = 0;
  650. indrv2 = indrv1 + *n;
  651. indrv3 = indrv2 + *n;
  652. indrv4 = indrv3 + *n;
  653. indrv5 = indrv4 + *n;
  654. /* Compute eigenvectors of matrix blocks. */
  655. j1 = 1;
  656. i__1 = iblock[*m];
  657. for (nblk = 1; nblk <= i__1; ++nblk) {
  658. /* Find starting and ending indices of block nblk. */
  659. if (nblk == 1) {
  660. b1 = 1;
  661. } else {
  662. b1 = isplit[nblk - 1] + 1;
  663. }
  664. bn = isplit[nblk];
  665. blksiz = bn - b1 + 1;
  666. if (blksiz == 1) {
  667. goto L60;
  668. }
  669. gpind = j1;
  670. /* Compute reorthogonalization criterion and stopping criterion. */
  671. onenrm = (r__1 = d__[b1], abs(r__1)) + (r__2 = e[b1], abs(r__2));
  672. /* Computing MAX */
  673. r__3 = onenrm, r__4 = (r__1 = d__[bn], abs(r__1)) + (r__2 = e[bn - 1],
  674. abs(r__2));
  675. onenrm = f2cmax(r__3,r__4);
  676. i__2 = bn - 1;
  677. for (i__ = b1 + 1; i__ <= i__2; ++i__) {
  678. /* Computing MAX */
  679. r__4 = onenrm, r__5 = (r__1 = d__[i__], abs(r__1)) + (r__2 = e[
  680. i__ - 1], abs(r__2)) + (r__3 = e[i__], abs(r__3));
  681. onenrm = f2cmax(r__4,r__5);
  682. /* L50: */
  683. }
  684. ortol = onenrm * .001f;
  685. stpcrt = sqrt(.1f / blksiz);
  686. /* Loop through eigenvalues of block nblk. */
  687. L60:
  688. jblk = 0;
  689. i__2 = *m;
  690. for (j = j1; j <= i__2; ++j) {
  691. if (iblock[j] != nblk) {
  692. j1 = j;
  693. goto L180;
  694. }
  695. ++jblk;
  696. xj = w[j];
  697. /* Skip all the work if the block size is one. */
  698. if (blksiz == 1) {
  699. work[indrv1 + 1] = 1.f;
  700. goto L140;
  701. }
  702. /* If eigenvalues j and j-1 are too close, add a relatively */
  703. /* small perturbation. */
  704. if (jblk > 1) {
  705. eps1 = (r__1 = eps * xj, abs(r__1));
  706. pertol = eps1 * 10.f;
  707. sep = xj - xjm;
  708. if (sep < pertol) {
  709. xj = xjm + pertol;
  710. }
  711. }
  712. its = 0;
  713. nrmchk = 0;
  714. /* Get random starting vector. */
  715. slarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
  716. /* Copy the matrix T so it won't be destroyed in factorization. */
  717. scopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
  718. i__3 = blksiz - 1;
  719. scopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
  720. i__3 = blksiz - 1;
  721. scopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
  722. /* Compute LU factors with partial pivoting ( PT = LU ) */
  723. tol = 0.f;
  724. slagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
  725. indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
  726. /* Update iteration count. */
  727. L70:
  728. ++its;
  729. if (its > 5) {
  730. goto L120;
  731. }
  732. /* Normalize and scale the righthand side vector Pb. */
  733. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  734. /* Computing MAX */
  735. r__3 = eps, r__4 = (r__1 = work[indrv4 + blksiz], abs(r__1));
  736. scl = blksiz * onenrm * f2cmax(r__3,r__4) / (r__2 = work[indrv1 +
  737. jmax], abs(r__2));
  738. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  739. /* Solve the system LU = Pb. */
  740. slagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
  741. work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
  742. indrv1 + 1], &tol, &iinfo);
  743. /* Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
  744. /* close enough. */
  745. if (jblk == 1) {
  746. goto L110;
  747. }
  748. if ((r__1 = xj - xjm, abs(r__1)) > ortol) {
  749. gpind = j;
  750. }
  751. if (gpind != j) {
  752. i__3 = j - 1;
  753. for (i__ = gpind; i__ <= i__3; ++i__) {
  754. ctr = 0.f;
  755. i__4 = blksiz;
  756. for (jr = 1; jr <= i__4; ++jr) {
  757. i__5 = b1 - 1 + jr + i__ * z_dim1;
  758. ctr += work[indrv1 + jr] * z__[i__5].r;
  759. /* L80: */
  760. }
  761. i__4 = blksiz;
  762. for (jr = 1; jr <= i__4; ++jr) {
  763. i__5 = b1 - 1 + jr + i__ * z_dim1;
  764. work[indrv1 + jr] -= ctr * z__[i__5].r;
  765. /* L90: */
  766. }
  767. /* L100: */
  768. }
  769. }
  770. /* Check the infinity norm of the iterate. */
  771. L110:
  772. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  773. nrm = (r__1 = work[indrv1 + jmax], abs(r__1));
  774. /* Continue for additional iterations after norm reaches */
  775. /* stopping criterion. */
  776. if (nrm < stpcrt) {
  777. goto L70;
  778. }
  779. ++nrmchk;
  780. if (nrmchk < 3) {
  781. goto L70;
  782. }
  783. goto L130;
  784. /* If stopping criterion was not satisfied, update info and */
  785. /* store eigenvector number in array ifail. */
  786. L120:
  787. ++(*info);
  788. ifail[*info] = j;
  789. /* Accept iterate as jth eigenvector. */
  790. L130:
  791. scl = 1.f / snrm2_(&blksiz, &work[indrv1 + 1], &c__1);
  792. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  793. if (work[indrv1 + jmax] < 0.f) {
  794. scl = -scl;
  795. }
  796. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  797. L140:
  798. i__3 = *n;
  799. for (i__ = 1; i__ <= i__3; ++i__) {
  800. i__4 = i__ + j * z_dim1;
  801. z__[i__4].r = 0.f, z__[i__4].i = 0.f;
  802. /* L150: */
  803. }
  804. i__3 = blksiz;
  805. for (i__ = 1; i__ <= i__3; ++i__) {
  806. i__4 = b1 + i__ - 1 + j * z_dim1;
  807. i__5 = indrv1 + i__;
  808. q__1.r = work[i__5], q__1.i = 0.f;
  809. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  810. /* L160: */
  811. }
  812. /* Save the shift to check eigenvalue spacing at next */
  813. /* iteration. */
  814. xjm = xj;
  815. /* L170: */
  816. }
  817. L180:
  818. ;
  819. }
  820. return 0;
  821. /* End of CSTEIN */
  822. } /* cstein_ */