You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstedc.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__9 = 9;
  381. static integer c__0 = 0;
  382. static integer c__2 = 2;
  383. static real c_b17 = 0.f;
  384. static real c_b18 = 1.f;
  385. static integer c__1 = 1;
  386. /* > \brief \b CSTEDC */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download CSTEDC + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstedc.
  393. f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstedc.
  396. f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstedc.
  399. f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE CSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, */
  405. /* LRWORK, IWORK, LIWORK, INFO ) */
  406. /* CHARACTER COMPZ */
  407. /* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N */
  408. /* INTEGER IWORK( * ) */
  409. /* REAL D( * ), E( * ), RWORK( * ) */
  410. /* COMPLEX WORK( * ), Z( LDZ, * ) */
  411. /* > \par Purpose: */
  412. /* ============= */
  413. /* > */
  414. /* > \verbatim */
  415. /* > */
  416. /* > CSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
  417. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  418. /* > The eigenvectors of a full or band complex Hermitian matrix can also */
  419. /* > be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this */
  420. /* > matrix to tridiagonal form. */
  421. /* > */
  422. /* > This code makes very mild assumptions about floating point */
  423. /* > arithmetic. It will work on machines with a guard digit in */
  424. /* > add/subtract, or on those binary machines without guard digits */
  425. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  426. /* > It could conceivably fail on hexadecimal or decimal machines */
  427. /* > without guard digits, but we know of none. See SLAED3 for details. */
  428. /* > \endverbatim */
  429. /* Arguments: */
  430. /* ========== */
  431. /* > \param[in] COMPZ */
  432. /* > \verbatim */
  433. /* > COMPZ is CHARACTER*1 */
  434. /* > = 'N': Compute eigenvalues only. */
  435. /* > = 'I': Compute eigenvectors of tridiagonal matrix also. */
  436. /* > = 'V': Compute eigenvectors of original Hermitian matrix */
  437. /* > also. On entry, Z contains the unitary matrix used */
  438. /* > to reduce the original matrix to tridiagonal form. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in] N */
  442. /* > \verbatim */
  443. /* > N is INTEGER */
  444. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in,out] D */
  448. /* > \verbatim */
  449. /* > D is REAL array, dimension (N) */
  450. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  451. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in,out] E */
  455. /* > \verbatim */
  456. /* > E is REAL array, dimension (N-1) */
  457. /* > On entry, the subdiagonal elements of the tridiagonal matrix. */
  458. /* > On exit, E has been destroyed. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in,out] Z */
  462. /* > \verbatim */
  463. /* > Z is COMPLEX array, dimension (LDZ,N) */
  464. /* > On entry, if COMPZ = 'V', then Z contains the unitary */
  465. /* > matrix used in the reduction to tridiagonal form. */
  466. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  467. /* > orthonormal eigenvectors of the original Hermitian matrix, */
  468. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  469. /* > of the symmetric tridiagonal matrix. */
  470. /* > If COMPZ = 'N', then Z is not referenced. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] LDZ */
  474. /* > \verbatim */
  475. /* > LDZ is INTEGER */
  476. /* > The leading dimension of the array Z. LDZ >= 1. */
  477. /* > If eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] WORK */
  481. /* > \verbatim */
  482. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  483. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in] LWORK */
  487. /* > \verbatim */
  488. /* > LWORK is INTEGER */
  489. /* > The dimension of the array WORK. */
  490. /* > If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */
  491. /* > If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */
  492. /* > Note that for COMPZ = 'V', then if N is less than or */
  493. /* > equal to the minimum divide size, usually 25, then LWORK need */
  494. /* > only be 1. */
  495. /* > */
  496. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  497. /* > only calculates the optimal sizes of the WORK, RWORK and */
  498. /* > IWORK arrays, returns these values as the first entries of */
  499. /* > the WORK, RWORK and IWORK arrays, and no error message */
  500. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  501. /* > \endverbatim */
  502. /* > */
  503. /* > \param[out] RWORK */
  504. /* > \verbatim */
  505. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  506. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[in] LRWORK */
  510. /* > \verbatim */
  511. /* > LRWORK is INTEGER */
  512. /* > The dimension of the array RWORK. */
  513. /* > If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */
  514. /* > If COMPZ = 'V' and N > 1, LRWORK must be at least */
  515. /* > 1 + 3*N + 2*N*lg N + 4*N**2 , */
  516. /* > where lg( N ) = smallest integer k such */
  517. /* > that 2**k >= N. */
  518. /* > If COMPZ = 'I' and N > 1, LRWORK must be at least */
  519. /* > 1 + 4*N + 2*N**2 . */
  520. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  521. /* > equal to the minimum divide size, usually 25, then LRWORK */
  522. /* > need only be f2cmax(1,2*(N-1)). */
  523. /* > */
  524. /* > If LRWORK = -1, then a workspace query is assumed; the */
  525. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  526. /* > and IWORK arrays, returns these values as the first entries */
  527. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  528. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[out] IWORK */
  532. /* > \verbatim */
  533. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  534. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] LIWORK */
  538. /* > \verbatim */
  539. /* > LIWORK is INTEGER */
  540. /* > The dimension of the array IWORK. */
  541. /* > If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */
  542. /* > If COMPZ = 'V' or N > 1, LIWORK must be at least */
  543. /* > 6 + 6*N + 5*N*lg N. */
  544. /* > If COMPZ = 'I' or N > 1, LIWORK must be at least */
  545. /* > 3 + 5*N . */
  546. /* > Note that for COMPZ = 'I' or 'V', then if N is less than or */
  547. /* > equal to the minimum divide size, usually 25, then LIWORK */
  548. /* > need only be 1. */
  549. /* > */
  550. /* > If LIWORK = -1, then a workspace query is assumed; the */
  551. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  552. /* > and IWORK arrays, returns these values as the first entries */
  553. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  554. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] INFO */
  558. /* > \verbatim */
  559. /* > INFO is INTEGER */
  560. /* > = 0: successful exit. */
  561. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  562. /* > > 0: The algorithm failed to compute an eigenvalue while */
  563. /* > working on the submatrix lying in rows and columns */
  564. /* > INFO/(N+1) through mod(INFO,N+1). */
  565. /* > \endverbatim */
  566. /* Authors: */
  567. /* ======== */
  568. /* > \author Univ. of Tennessee */
  569. /* > \author Univ. of California Berkeley */
  570. /* > \author Univ. of Colorado Denver */
  571. /* > \author NAG Ltd. */
  572. /* > \date December 2016 */
  573. /* > \ingroup complexOTHERcomputational */
  574. /* > \par Contributors: */
  575. /* ================== */
  576. /* > */
  577. /* > Jeff Rutter, Computer Science Division, University of California */
  578. /* > at Berkeley, USA */
  579. /* ===================================================================== */
  580. /* Subroutine */ int cstedc_(char *compz, integer *n, real *d__, real *e,
  581. complex *z__, integer *ldz, complex *work, integer *lwork, real *
  582. rwork, integer *lrwork, integer *iwork, integer *liwork, integer *
  583. info)
  584. {
  585. /* System generated locals */
  586. integer z_dim1, z_offset, i__1, i__2, i__3, i__4;
  587. real r__1, r__2;
  588. /* Local variables */
  589. real tiny;
  590. integer i__, j, k, m;
  591. real p;
  592. extern logical lsame_(char *, char *);
  593. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  594. complex *, integer *);
  595. integer lwmin;
  596. extern /* Subroutine */ int claed0_(integer *, integer *, real *, real *,
  597. complex *, integer *, complex *, integer *, real *, integer *,
  598. integer *);
  599. integer start, ii, ll;
  600. extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
  601. integer *, real *, integer *, complex *, integer *, real *);
  602. extern real slamch_(char *);
  603. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  604. *, integer *, complex *, integer *), xerbla_(char *,
  605. integer *, ftnlen);
  606. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  607. integer *, integer *, ftnlen, ftnlen);
  608. integer finish;
  609. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  610. real *, integer *, integer *, real *, integer *, integer *), sstedc_(char *, integer *, real *, real *, real *,
  611. integer *, real *, integer *, integer *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  612. real *, integer *);
  613. integer liwmin, icompz;
  614. extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
  615. complex *, integer *, real *, integer *);
  616. real orgnrm;
  617. extern real slanst_(char *, integer *, real *, real *);
  618. extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
  619. integer lrwmin;
  620. logical lquery;
  621. integer smlsiz;
  622. extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
  623. real *, integer *, real *, integer *);
  624. integer lgn;
  625. real eps;
  626. /* -- LAPACK computational routine (version 3.7.0) -- */
  627. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  628. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  629. /* December 2016 */
  630. /* ===================================================================== */
  631. /* Test the input parameters. */
  632. /* Parameter adjustments */
  633. --d__;
  634. --e;
  635. z_dim1 = *ldz;
  636. z_offset = 1 + z_dim1 * 1;
  637. z__ -= z_offset;
  638. --work;
  639. --rwork;
  640. --iwork;
  641. /* Function Body */
  642. *info = 0;
  643. lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
  644. if (lsame_(compz, "N")) {
  645. icompz = 0;
  646. } else if (lsame_(compz, "V")) {
  647. icompz = 1;
  648. } else if (lsame_(compz, "I")) {
  649. icompz = 2;
  650. } else {
  651. icompz = -1;
  652. }
  653. if (icompz < 0) {
  654. *info = -1;
  655. } else if (*n < 0) {
  656. *info = -2;
  657. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  658. *info = -6;
  659. }
  660. if (*info == 0) {
  661. /* Compute the workspace requirements */
  662. smlsiz = ilaenv_(&c__9, "CSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
  663. ftnlen)6, (ftnlen)1);
  664. if (*n <= 1 || icompz == 0) {
  665. lwmin = 1;
  666. liwmin = 1;
  667. lrwmin = 1;
  668. } else if (*n <= smlsiz) {
  669. lwmin = 1;
  670. liwmin = 1;
  671. lrwmin = *n - 1 << 1;
  672. } else if (icompz == 1) {
  673. lgn = (integer) (log((real) (*n)) / log(2.f));
  674. if (pow_ii(&c__2, &lgn) < *n) {
  675. ++lgn;
  676. }
  677. if (pow_ii(&c__2, &lgn) < *n) {
  678. ++lgn;
  679. }
  680. lwmin = *n * *n;
  681. /* Computing 2nd power */
  682. i__1 = *n;
  683. lrwmin = *n * 3 + 1 + (*n << 1) * lgn + (i__1 * i__1 << 2);
  684. liwmin = *n * 6 + 6 + *n * 5 * lgn;
  685. } else if (icompz == 2) {
  686. lwmin = 1;
  687. /* Computing 2nd power */
  688. i__1 = *n;
  689. lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1);
  690. liwmin = *n * 5 + 3;
  691. }
  692. work[1].r = (real) lwmin, work[1].i = 0.f;
  693. rwork[1] = (real) lrwmin;
  694. iwork[1] = liwmin;
  695. if (*lwork < lwmin && ! lquery) {
  696. *info = -8;
  697. } else if (*lrwork < lrwmin && ! lquery) {
  698. *info = -10;
  699. } else if (*liwork < liwmin && ! lquery) {
  700. *info = -12;
  701. }
  702. }
  703. if (*info != 0) {
  704. i__1 = -(*info);
  705. xerbla_("CSTEDC", &i__1, (ftnlen)6);
  706. return 0;
  707. } else if (lquery) {
  708. return 0;
  709. }
  710. /* Quick return if possible */
  711. if (*n == 0) {
  712. return 0;
  713. }
  714. if (*n == 1) {
  715. if (icompz != 0) {
  716. i__1 = z_dim1 + 1;
  717. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  718. }
  719. return 0;
  720. }
  721. /* If the following conditional clause is removed, then the routine */
  722. /* will use the Divide and Conquer routine to compute only the */
  723. /* eigenvalues, which requires (3N + 3N**2) real workspace and */
  724. /* (2 + 5N + 2N lg(N)) integer workspace. */
  725. /* Since on many architectures SSTERF is much faster than any other */
  726. /* algorithm for finding eigenvalues only, it is used here */
  727. /* as the default. If the conditional clause is removed, then */
  728. /* information on the size of workspace needs to be changed. */
  729. /* If COMPZ = 'N', use SSTERF to compute the eigenvalues. */
  730. if (icompz == 0) {
  731. ssterf_(n, &d__[1], &e[1], info);
  732. goto L70;
  733. }
  734. /* If N is smaller than the minimum divide size (SMLSIZ+1), then */
  735. /* solve the problem with another solver. */
  736. if (*n <= smlsiz) {
  737. csteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1],
  738. info);
  739. } else {
  740. /* If COMPZ = 'I', we simply call SSTEDC instead. */
  741. if (icompz == 2) {
  742. slaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n);
  743. ll = *n * *n + 1;
  744. i__1 = *lrwork - ll + 1;
  745. sstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, &
  746. iwork[1], liwork, info);
  747. i__1 = *n;
  748. for (j = 1; j <= i__1; ++j) {
  749. i__2 = *n;
  750. for (i__ = 1; i__ <= i__2; ++i__) {
  751. i__3 = i__ + j * z_dim1;
  752. i__4 = (j - 1) * *n + i__;
  753. z__[i__3].r = rwork[i__4], z__[i__3].i = 0.f;
  754. /* L10: */
  755. }
  756. /* L20: */
  757. }
  758. goto L70;
  759. }
  760. /* From now on, only option left to be handled is COMPZ = 'V', */
  761. /* i.e. ICOMPZ = 1. */
  762. /* Scale. */
  763. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  764. if (orgnrm == 0.f) {
  765. goto L70;
  766. }
  767. eps = slamch_("Epsilon");
  768. start = 1;
  769. /* while ( START <= N ) */
  770. L30:
  771. if (start <= *n) {
  772. /* Let FINISH be the position of the next subdiagonal entry */
  773. /* such that E( FINISH ) <= TINY or FINISH = N if no such */
  774. /* subdiagonal exists. The matrix identified by the elements */
  775. /* between START and FINISH constitutes an independent */
  776. /* sub-problem. */
  777. finish = start;
  778. L40:
  779. if (finish < *n) {
  780. tiny = eps * sqrt((r__1 = d__[finish], abs(r__1))) * sqrt((
  781. r__2 = d__[finish + 1], abs(r__2)));
  782. if ((r__1 = e[finish], abs(r__1)) > tiny) {
  783. ++finish;
  784. goto L40;
  785. }
  786. }
  787. /* (Sub) Problem determined. Compute its size and solve it. */
  788. m = finish - start + 1;
  789. if (m > smlsiz) {
  790. /* Scale. */
  791. orgnrm = slanst_("M", &m, &d__[start], &e[start]);
  792. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
  793. start], &m, info);
  794. i__1 = m - 1;
  795. i__2 = m - 1;
  796. slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
  797. start], &i__2, info);
  798. claed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 +
  799. 1], ldz, &work[1], n, &rwork[1], &iwork[1], info);
  800. if (*info > 0) {
  801. *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
  802. (m + 1) + start - 1;
  803. goto L70;
  804. }
  805. /* Scale back. */
  806. slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
  807. start], &m, info);
  808. } else {
  809. ssteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, &
  810. rwork[m * m + 1], info);
  811. clacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, &
  812. work[1], n, &rwork[m * m + 1]);
  813. clacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1],
  814. ldz);
  815. if (*info > 0) {
  816. *info = start * (*n + 1) + finish;
  817. goto L70;
  818. }
  819. }
  820. start = finish + 1;
  821. goto L30;
  822. }
  823. /* endwhile */
  824. /* Use Selection Sort to minimize swaps of eigenvectors */
  825. i__1 = *n;
  826. for (ii = 2; ii <= i__1; ++ii) {
  827. i__ = ii - 1;
  828. k = i__;
  829. p = d__[i__];
  830. i__2 = *n;
  831. for (j = ii; j <= i__2; ++j) {
  832. if (d__[j] < p) {
  833. k = j;
  834. p = d__[j];
  835. }
  836. /* L50: */
  837. }
  838. if (k != i__) {
  839. d__[k] = d__[i__];
  840. d__[i__] = p;
  841. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  842. &c__1);
  843. }
  844. /* L60: */
  845. }
  846. }
  847. L70:
  848. work[1].r = (real) lwmin, work[1].i = 0.f;
  849. rwork[1] = (real) lrwmin;
  850. iwork[1] = liwmin;
  851. return 0;
  852. /* End of CSTEDC */
  853. } /* cstedc_ */