You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatdf.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {1.f,0.f};
  381. static integer c__1 = 1;
  382. static integer c_n1 = -1;
  383. static real c_b24 = 1.f;
  384. /* > \brief \b CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contrib
  385. ution to the reciprocal Dif-estimate. */
  386. /* =========== DOCUMENTATION =========== */
  387. /* Online html documentation available at */
  388. /* http://www.netlib.org/lapack/explore-html/ */
  389. /* > \htmlonly */
  390. /* > Download CLATDF + dependencies */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatdf.
  392. f"> */
  393. /* > [TGZ]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatdf.
  395. f"> */
  396. /* > [ZIP]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatdf.
  398. f"> */
  399. /* > [TXT]</a> */
  400. /* > \endhtmlonly */
  401. /* Definition: */
  402. /* =========== */
  403. /* SUBROUTINE CLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, */
  404. /* JPIV ) */
  405. /* INTEGER IJOB, LDZ, N */
  406. /* REAL RDSCAL, RDSUM */
  407. /* INTEGER IPIV( * ), JPIV( * ) */
  408. /* COMPLEX RHS( * ), Z( LDZ, * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > CLATDF computes the contribution to the reciprocal Dif-estimate */
  415. /* > by solving for x in Z * x = b, where b is chosen such that the norm */
  416. /* > of x is as large as possible. It is assumed that LU decomposition */
  417. /* > of Z has been computed by CGETC2. On entry RHS = f holds the */
  418. /* > contribution from earlier solved sub-systems, and on return RHS = x. */
  419. /* > */
  420. /* > The factorization of Z returned by CGETC2 has the form */
  421. /* > Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */
  422. /* > triangular with unit diagonal elements and U is upper triangular. */
  423. /* > \endverbatim */
  424. /* Arguments: */
  425. /* ========== */
  426. /* > \param[in] IJOB */
  427. /* > \verbatim */
  428. /* > IJOB is INTEGER */
  429. /* > IJOB = 2: First compute an approximative null-vector e */
  430. /* > of Z using CGECON, e is normalized and solve for */
  431. /* > Zx = +-e - f with the sign giving the greater value of */
  432. /* > 2-norm(x). About 5 times as expensive as Default. */
  433. /* > IJOB .ne. 2: Local look ahead strategy where */
  434. /* > all entries of the r.h.s. b is chosen as either +1 or */
  435. /* > -1. Default. */
  436. /* > \endverbatim */
  437. /* > */
  438. /* > \param[in] N */
  439. /* > \verbatim */
  440. /* > N is INTEGER */
  441. /* > The number of columns of the matrix Z. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] Z */
  445. /* > \verbatim */
  446. /* > Z is COMPLEX array, dimension (LDZ, N) */
  447. /* > On entry, the LU part of the factorization of the n-by-n */
  448. /* > matrix Z computed by CGETC2: Z = P * L * U * Q */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[in] LDZ */
  452. /* > \verbatim */
  453. /* > LDZ is INTEGER */
  454. /* > The leading dimension of the array Z. LDA >= f2cmax(1, N). */
  455. /* > \endverbatim */
  456. /* > */
  457. /* > \param[in,out] RHS */
  458. /* > \verbatim */
  459. /* > RHS is COMPLEX array, dimension (N). */
  460. /* > On entry, RHS contains contributions from other subsystems. */
  461. /* > On exit, RHS contains the solution of the subsystem with */
  462. /* > entries according to the value of IJOB (see above). */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in,out] RDSUM */
  466. /* > \verbatim */
  467. /* > RDSUM is REAL */
  468. /* > On entry, the sum of squares of computed contributions to */
  469. /* > the Dif-estimate under computation by CTGSYL, where the */
  470. /* > scaling factor RDSCAL (see below) has been factored out. */
  471. /* > On exit, the corresponding sum of squares updated with the */
  472. /* > contributions from the current sub-system. */
  473. /* > If TRANS = 'T' RDSUM is not touched. */
  474. /* > NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. */
  475. /* > \endverbatim */
  476. /* > */
  477. /* > \param[in,out] RDSCAL */
  478. /* > \verbatim */
  479. /* > RDSCAL is REAL */
  480. /* > On entry, scaling factor used to prevent overflow in RDSUM. */
  481. /* > On exit, RDSCAL is updated w.r.t. the current contributions */
  482. /* > in RDSUM. */
  483. /* > If TRANS = 'T', RDSCAL is not touched. */
  484. /* > NOTE: RDSCAL only makes sense when CTGSY2 is called by */
  485. /* > CTGSYL. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in] IPIV */
  489. /* > \verbatim */
  490. /* > IPIV is INTEGER array, dimension (N). */
  491. /* > The pivot indices; for 1 <= i <= N, row i of the */
  492. /* > matrix has been interchanged with row IPIV(i). */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[in] JPIV */
  496. /* > \verbatim */
  497. /* > JPIV is INTEGER array, dimension (N). */
  498. /* > The pivot indices; for 1 <= j <= N, column j of the */
  499. /* > matrix has been interchanged with column JPIV(j). */
  500. /* > \endverbatim */
  501. /* Authors: */
  502. /* ======== */
  503. /* > \author Univ. of Tennessee */
  504. /* > \author Univ. of California Berkeley */
  505. /* > \author Univ. of Colorado Denver */
  506. /* > \author NAG Ltd. */
  507. /* > \date June 2016 */
  508. /* > \ingroup complexOTHERauxiliary */
  509. /* > \par Further Details: */
  510. /* ===================== */
  511. /* > */
  512. /* > This routine is a further developed implementation of algorithm */
  513. /* > BSOLVE in [1] using complete pivoting in the LU factorization. */
  514. /* > \par Contributors: */
  515. /* ================== */
  516. /* > */
  517. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  518. /* > Umea University, S-901 87 Umea, Sweden. */
  519. /* > \par References: */
  520. /* ================ */
  521. /* > */
  522. /* > [1] Bo Kagstrom and Lars Westin, */
  523. /* > Generalized Schur Methods with Condition Estimators for */
  524. /* > Solving the Generalized Sylvester Equation, IEEE Transactions */
  525. /* > on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
  526. /* > */
  527. /* > [2] Peter Poromaa, */
  528. /* > On Efficient and Robust Estimators for the Separation */
  529. /* > between two Regular Matrix Pairs with Applications in */
  530. /* > Condition Estimation. Report UMINF-95.05, Department of */
  531. /* > Computing Science, Umea University, S-901 87 Umea, Sweden, */
  532. /* > 1995. */
  533. /* ===================================================================== */
  534. /* Subroutine */ int clatdf_(integer *ijob, integer *n, complex *z__, integer
  535. *ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer
  536. *jpiv)
  537. {
  538. /* System generated locals */
  539. integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  540. complex q__1, q__2, q__3;
  541. /* Local variables */
  542. integer info;
  543. complex temp, work[8];
  544. integer i__, j, k;
  545. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  546. integer *);
  547. real scale;
  548. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  549. *, complex *, integer *);
  550. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  551. complex *, integer *);
  552. complex pmone;
  553. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  554. integer *, complex *, integer *);
  555. real rtemp, sminu, rwork[2], splus;
  556. extern /* Subroutine */ int cgesc2_(integer *, complex *, integer *,
  557. complex *, integer *, integer *, real *);
  558. complex bm, bp;
  559. extern /* Subroutine */ int cgecon_(char *, integer *, complex *, integer
  560. *, real *, real *, complex *, real *, integer *);
  561. complex xm[2], xp[2];
  562. extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
  563. *, real *), claswp_(integer *, complex *, integer *, integer *,
  564. integer *, integer *, integer *);
  565. extern real scasum_(integer *, complex *, integer *);
  566. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  567. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  568. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  569. /* June 2016 */
  570. /* ===================================================================== */
  571. /* Parameter adjustments */
  572. z_dim1 = *ldz;
  573. z_offset = 1 + z_dim1 * 1;
  574. z__ -= z_offset;
  575. --rhs;
  576. --ipiv;
  577. --jpiv;
  578. /* Function Body */
  579. if (*ijob != 2) {
  580. /* Apply permutations IPIV to RHS */
  581. i__1 = *n - 1;
  582. claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
  583. /* Solve for L-part choosing RHS either to +1 or -1. */
  584. q__1.r = -1.f, q__1.i = 0.f;
  585. pmone.r = q__1.r, pmone.i = q__1.i;
  586. i__1 = *n - 1;
  587. for (j = 1; j <= i__1; ++j) {
  588. i__2 = j;
  589. q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f;
  590. bp.r = q__1.r, bp.i = q__1.i;
  591. i__2 = j;
  592. q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f;
  593. bm.r = q__1.r, bm.i = q__1.i;
  594. splus = 1.f;
  595. /* Lockahead for L- part RHS(1:N-1) = +-1 */
  596. /* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */
  597. i__2 = *n - j;
  598. cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
  599. + j * z_dim1], &c__1);
  600. splus += q__1.r;
  601. i__2 = *n - j;
  602. cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
  603. &c__1);
  604. sminu = q__1.r;
  605. i__2 = j;
  606. splus *= rhs[i__2].r;
  607. if (splus > sminu) {
  608. i__2 = j;
  609. rhs[i__2].r = bp.r, rhs[i__2].i = bp.i;
  610. } else if (sminu > splus) {
  611. i__2 = j;
  612. rhs[i__2].r = bm.r, rhs[i__2].i = bm.i;
  613. } else {
  614. /* In this case the updating sums are equal and we can */
  615. /* choose RHS(J) +1 or -1. The first time this happens we */
  616. /* choose -1, thereafter +1. This is a simple way to get */
  617. /* good estimates of matrices like Byers well-known example */
  618. /* (see [1]). (Not done in BSOLVE.) */
  619. i__2 = j;
  620. i__3 = j;
  621. q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i +
  622. pmone.i;
  623. rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i;
  624. pmone.r = 1.f, pmone.i = 0.f;
  625. }
  626. /* Compute the remaining r.h.s. */
  627. i__2 = j;
  628. q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i;
  629. temp.r = q__1.r, temp.i = q__1.i;
  630. i__2 = *n - j;
  631. caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
  632. &c__1);
  633. /* L10: */
  634. }
  635. /* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */
  636. /* In BSOLVE and will hopefully give us a better estimate because */
  637. /* any ill-conditioning of the original matrix is transferred to U */
  638. /* and not to L. U(N, N) is an approximation to sigma_min(LU). */
  639. i__1 = *n - 1;
  640. ccopy_(&i__1, &rhs[1], &c__1, work, &c__1);
  641. i__1 = *n - 1;
  642. i__2 = *n;
  643. q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f;
  644. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  645. i__1 = *n;
  646. i__2 = *n;
  647. q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f;
  648. rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i;
  649. splus = 0.f;
  650. sminu = 0.f;
  651. for (i__ = *n; i__ >= 1; --i__) {
  652. c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]);
  653. temp.r = q__1.r, temp.i = q__1.i;
  654. i__1 = i__ - 1;
  655. i__2 = i__ - 1;
  656. q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i =
  657. work[i__2].r * temp.i + work[i__2].i * temp.r;
  658. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  659. i__1 = i__;
  660. i__2 = i__;
  661. q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i =
  662. rhs[i__2].r * temp.i + rhs[i__2].i * temp.r;
  663. rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i;
  664. i__1 = *n;
  665. for (k = i__ + 1; k <= i__1; ++k) {
  666. i__2 = i__ - 1;
  667. i__3 = i__ - 1;
  668. i__4 = k - 1;
  669. i__5 = i__ + k * z_dim1;
  670. q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i =
  671. z__[i__5].r * temp.i + z__[i__5].i * temp.r;
  672. q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i,
  673. q__2.i = work[i__4].r * q__3.i + work[i__4].i *
  674. q__3.r;
  675. q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i -
  676. q__2.i;
  677. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  678. i__2 = i__;
  679. i__3 = i__;
  680. i__4 = k;
  681. i__5 = i__ + k * z_dim1;
  682. q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i =
  683. z__[i__5].r * temp.i + z__[i__5].i * temp.r;
  684. q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i =
  685. rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r;
  686. q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i;
  687. rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i;
  688. /* L20: */
  689. }
  690. splus += c_abs(&work[i__ - 1]);
  691. sminu += c_abs(&rhs[i__]);
  692. /* L30: */
  693. }
  694. if (splus > sminu) {
  695. ccopy_(n, work, &c__1, &rhs[1], &c__1);
  696. }
  697. /* Apply the permutations JPIV to the computed solution (RHS) */
  698. i__1 = *n - 1;
  699. claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
  700. /* Compute the sum of squares */
  701. classq_(n, &rhs[1], &c__1, rdscal, rdsum);
  702. return 0;
  703. }
  704. /* ENTRY IJOB = 2 */
  705. /* Compute approximate nullvector XM of Z */
  706. cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info);
  707. ccopy_(n, &work[*n], &c__1, xm, &c__1);
  708. /* Compute RHS */
  709. i__1 = *n - 1;
  710. claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
  711. cdotc_(&q__3, n, xm, &c__1, xm, &c__1);
  712. c_sqrt(&q__2, &q__3);
  713. c_div(&q__1, &c_b1, &q__2);
  714. temp.r = q__1.r, temp.i = q__1.i;
  715. cscal_(n, &temp, xm, &c__1);
  716. ccopy_(n, xm, &c__1, xp, &c__1);
  717. caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1);
  718. q__1.r = -1.f, q__1.i = 0.f;
  719. caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1);
  720. cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale);
  721. cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale);
  722. if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) {
  723. ccopy_(n, xp, &c__1, &rhs[1], &c__1);
  724. }
  725. /* Compute the sum of squares */
  726. classq_(n, &rhs[1], &c__1, rdscal, rdsum);
  727. return 0;
  728. /* End of CLATDF */
  729. } /* clatdf_ */