You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clartg.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b CLARTG generates a plane rotation with real cosine and complex sine. */
  380. /* =========== DOCUMENTATION =========== */
  381. /* Online html documentation available at */
  382. /* http://www.netlib.org/lapack/explore-html/ */
  383. /* > \htmlonly */
  384. /* > Download CLARTG + dependencies */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clartg.
  386. f"> */
  387. /* > [TGZ]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clartg.
  389. f"> */
  390. /* > [ZIP]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clartg.
  392. f"> */
  393. /* > [TXT]</a> */
  394. /* > \endhtmlonly */
  395. /* Definition: */
  396. /* =========== */
  397. /* SUBROUTINE CLARTG( F, G, CS, SN, R ) */
  398. /* REAL CS */
  399. /* COMPLEX F, G, R, SN */
  400. /* > \par Purpose: */
  401. /* ============= */
  402. /* > */
  403. /* > \verbatim */
  404. /* > */
  405. /* > CLARTG generates a plane rotation so that */
  406. /* > */
  407. /* > [ CS SN ] [ F ] [ R ] */
  408. /* > [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. */
  409. /* > [ -SN CS ] [ G ] [ 0 ] */
  410. /* > */
  411. /* > This is a faster version of the BLAS1 routine CROTG, except for */
  412. /* > the following differences: */
  413. /* > F and G are unchanged on return. */
  414. /* > If G=0, then CS=1 and SN=0. */
  415. /* > If F=0, then CS=0 and SN is chosen so that R is real. */
  416. /* > \endverbatim */
  417. /* Arguments: */
  418. /* ========== */
  419. /* > \param[in] F */
  420. /* > \verbatim */
  421. /* > F is COMPLEX */
  422. /* > The first component of vector to be rotated. */
  423. /* > \endverbatim */
  424. /* > */
  425. /* > \param[in] G */
  426. /* > \verbatim */
  427. /* > G is COMPLEX */
  428. /* > The second component of vector to be rotated. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[out] CS */
  432. /* > \verbatim */
  433. /* > CS is REAL */
  434. /* > The cosine of the rotation. */
  435. /* > \endverbatim */
  436. /* > */
  437. /* > \param[out] SN */
  438. /* > \verbatim */
  439. /* > SN is COMPLEX */
  440. /* > The sine of the rotation. */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[out] R */
  444. /* > \verbatim */
  445. /* > R is COMPLEX */
  446. /* > The nonzero component of the rotated vector. */
  447. /* > \endverbatim */
  448. /* Authors: */
  449. /* ======== */
  450. /* > \author Univ. of Tennessee */
  451. /* > \author Univ. of California Berkeley */
  452. /* > \author Univ. of Colorado Denver */
  453. /* > \author NAG Ltd. */
  454. /* > \date December 2016 */
  455. /* > \ingroup complexOTHERauxiliary */
  456. /* > \par Further Details: */
  457. /* ===================== */
  458. /* > */
  459. /* > \verbatim */
  460. /* > */
  461. /* > 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
  462. /* > */
  463. /* > This version has a few statements commented out for thread safety */
  464. /* > (machine parameters are computed on each entry). 10 feb 03, SJH. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* ===================================================================== */
  468. /* Subroutine */ int clartg_(complex *f, complex *g, real *cs, complex *sn,
  469. complex *r__)
  470. {
  471. /* System generated locals */
  472. integer i__1;
  473. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
  474. complex q__1, q__2, q__3;
  475. /* Local variables */
  476. real d__;
  477. integer i__;
  478. real scale;
  479. integer count;
  480. real f2, g2, safmn2, safmx2;
  481. extern real slapy2_(real *, real *);
  482. complex ff;
  483. real di, dr;
  484. complex fs, gs;
  485. extern real slamch_(char *);
  486. real safmin;
  487. extern logical sisnan_(real *);
  488. real f2s, g2s, eps;
  489. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  490. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  491. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  492. /* December 2016 */
  493. /* ===================================================================== */
  494. /* LOGICAL FIRST */
  495. safmin = slamch_("S");
  496. eps = slamch_("E");
  497. r__1 = slamch_("B");
  498. i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
  499. safmn2 = pow_ri(&r__1, &i__1);
  500. safmx2 = 1.f / safmn2;
  501. /* Computing MAX */
  502. /* Computing MAX */
  503. r__7 = (r__1 = f->r, abs(r__1)), r__8 = (r__2 = r_imag(f), abs(r__2));
  504. /* Computing MAX */
  505. r__9 = (r__3 = g->r, abs(r__3)), r__10 = (r__4 = r_imag(g), abs(r__4));
  506. r__5 = f2cmax(r__7,r__8), r__6 = f2cmax(r__9,r__10);
  507. scale = f2cmax(r__5,r__6);
  508. fs.r = f->r, fs.i = f->i;
  509. gs.r = g->r, gs.i = g->i;
  510. count = 0;
  511. if (scale >= safmx2) {
  512. L10:
  513. ++count;
  514. q__1.r = safmn2 * fs.r, q__1.i = safmn2 * fs.i;
  515. fs.r = q__1.r, fs.i = q__1.i;
  516. q__1.r = safmn2 * gs.r, q__1.i = safmn2 * gs.i;
  517. gs.r = q__1.r, gs.i = q__1.i;
  518. scale *= safmn2;
  519. if (scale >= safmx2 && count < 20) {
  520. goto L10;
  521. }
  522. } else if (scale <= safmn2) {
  523. r__1 = c_abs(g);
  524. if (g->r == 0.f && g->i == 0.f || sisnan_(&r__1)) {
  525. *cs = 1.f;
  526. sn->r = 0.f, sn->i = 0.f;
  527. r__->r = f->r, r__->i = f->i;
  528. return 0;
  529. }
  530. L20:
  531. --count;
  532. q__1.r = safmx2 * fs.r, q__1.i = safmx2 * fs.i;
  533. fs.r = q__1.r, fs.i = q__1.i;
  534. q__1.r = safmx2 * gs.r, q__1.i = safmx2 * gs.i;
  535. gs.r = q__1.r, gs.i = q__1.i;
  536. scale *= safmx2;
  537. if (scale <= safmn2) {
  538. goto L20;
  539. }
  540. }
  541. /* Computing 2nd power */
  542. r__1 = fs.r;
  543. /* Computing 2nd power */
  544. r__2 = r_imag(&fs);
  545. f2 = r__1 * r__1 + r__2 * r__2;
  546. /* Computing 2nd power */
  547. r__1 = gs.r;
  548. /* Computing 2nd power */
  549. r__2 = r_imag(&gs);
  550. g2 = r__1 * r__1 + r__2 * r__2;
  551. if (f2 <= f2cmax(g2,1.f) * safmin) {
  552. /* This is a rare case: F is very small. */
  553. if (f->r == 0.f && f->i == 0.f) {
  554. *cs = 0.f;
  555. r__2 = g->r;
  556. r__3 = r_imag(g);
  557. r__1 = slapy2_(&r__2, &r__3);
  558. r__->r = r__1, r__->i = 0.f;
  559. /* Do complex/real division explicitly with two real divisions */
  560. r__1 = gs.r;
  561. r__2 = r_imag(&gs);
  562. d__ = slapy2_(&r__1, &r__2);
  563. r__1 = gs.r / d__;
  564. r__2 = -r_imag(&gs) / d__;
  565. q__1.r = r__1, q__1.i = r__2;
  566. sn->r = q__1.r, sn->i = q__1.i;
  567. return 0;
  568. }
  569. r__1 = fs.r;
  570. r__2 = r_imag(&fs);
  571. f2s = slapy2_(&r__1, &r__2);
  572. /* G2 and G2S are accurate */
  573. /* G2 is at least SAFMIN, and G2S is at least SAFMN2 */
  574. g2s = sqrt(g2);
  575. /* Error in CS from underflow in F2S is at most */
  576. /* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
  577. /* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
  578. /* and so CS .lt. sqrt(SAFMIN) */
  579. /* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
  580. /* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
  581. /* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
  582. *cs = f2s / g2s;
  583. /* Make sure abs(FF) = 1 */
  584. /* Do complex/real division explicitly with 2 real divisions */
  585. /* Computing MAX */
  586. r__3 = (r__1 = f->r, abs(r__1)), r__4 = (r__2 = r_imag(f), abs(r__2));
  587. if (f2cmax(r__3,r__4) > 1.f) {
  588. r__1 = f->r;
  589. r__2 = r_imag(f);
  590. d__ = slapy2_(&r__1, &r__2);
  591. r__1 = f->r / d__;
  592. r__2 = r_imag(f) / d__;
  593. q__1.r = r__1, q__1.i = r__2;
  594. ff.r = q__1.r, ff.i = q__1.i;
  595. } else {
  596. dr = safmx2 * f->r;
  597. di = safmx2 * r_imag(f);
  598. d__ = slapy2_(&dr, &di);
  599. r__1 = dr / d__;
  600. r__2 = di / d__;
  601. q__1.r = r__1, q__1.i = r__2;
  602. ff.r = q__1.r, ff.i = q__1.i;
  603. }
  604. r__1 = gs.r / g2s;
  605. r__2 = -r_imag(&gs) / g2s;
  606. q__2.r = r__1, q__2.i = r__2;
  607. q__1.r = ff.r * q__2.r - ff.i * q__2.i, q__1.i = ff.r * q__2.i + ff.i
  608. * q__2.r;
  609. sn->r = q__1.r, sn->i = q__1.i;
  610. q__2.r = *cs * f->r, q__2.i = *cs * f->i;
  611. q__3.r = sn->r * g->r - sn->i * g->i, q__3.i = sn->r * g->i + sn->i *
  612. g->r;
  613. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  614. r__->r = q__1.r, r__->i = q__1.i;
  615. } else {
  616. /* This is the most common case. */
  617. /* Neither F2 nor F2/G2 are less than SAFMIN */
  618. /* F2S cannot overflow, and it is accurate */
  619. f2s = sqrt(g2 / f2 + 1.f);
  620. /* Do the F2S(real)*FS(complex) multiply with two real multiplies */
  621. r__1 = f2s * fs.r;
  622. r__2 = f2s * r_imag(&fs);
  623. q__1.r = r__1, q__1.i = r__2;
  624. r__->r = q__1.r, r__->i = q__1.i;
  625. *cs = 1.f / f2s;
  626. d__ = f2 + g2;
  627. /* Do complex/real division explicitly with two real divisions */
  628. r__1 = r__->r / d__;
  629. r__2 = r_imag(r__) / d__;
  630. q__1.r = r__1, q__1.i = r__2;
  631. sn->r = q__1.r, sn->i = q__1.i;
  632. r_cnjg(&q__2, &gs);
  633. q__1.r = sn->r * q__2.r - sn->i * q__2.i, q__1.i = sn->r * q__2.i +
  634. sn->i * q__2.r;
  635. sn->r = q__1.r, sn->i = q__1.i;
  636. if (count != 0) {
  637. if (count > 0) {
  638. i__1 = count;
  639. for (i__ = 1; i__ <= i__1; ++i__) {
  640. q__1.r = safmx2 * r__->r, q__1.i = safmx2 * r__->i;
  641. r__->r = q__1.r, r__->i = q__1.i;
  642. /* L30: */
  643. }
  644. } else {
  645. i__1 = -count;
  646. for (i__ = 1; i__ <= i__1; ++i__) {
  647. q__1.r = safmn2 * r__->r, q__1.i = safmn2 * r__->i;
  648. r__->r = q__1.r, r__->i = q__1.i;
  649. /* L40: */
  650. }
  651. }
  652. }
  653. }
  654. return 0;
  655. /* End of CLARTG */
  656. } /* clartg_ */