You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarft.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {1.f,0.f};
  381. static integer c__1 = 1;
  382. /* > \brief \b CLARFT forms the triangular factor T of a block reflector H = I - vtvH */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download CLARFT + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) */
  401. /* CHARACTER DIRECT, STOREV */
  402. /* INTEGER K, LDT, LDV, N */
  403. /* COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) */
  404. /* > \par Purpose: */
  405. /* ============= */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > CLARFT forms the triangular factor T of a complex block reflector H */
  410. /* > of order n, which is defined as a product of k elementary reflectors. */
  411. /* > */
  412. /* > If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */
  413. /* > */
  414. /* > If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */
  415. /* > */
  416. /* > If STOREV = 'C', the vector which defines the elementary reflector */
  417. /* > H(i) is stored in the i-th column of the array V, and */
  418. /* > */
  419. /* > H = I - V * T * V**H */
  420. /* > */
  421. /* > If STOREV = 'R', the vector which defines the elementary reflector */
  422. /* > H(i) is stored in the i-th row of the array V, and */
  423. /* > */
  424. /* > H = I - V**H * T * V */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] DIRECT */
  429. /* > \verbatim */
  430. /* > DIRECT is CHARACTER*1 */
  431. /* > Specifies the order in which the elementary reflectors are */
  432. /* > multiplied to form the block reflector: */
  433. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  434. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  435. /* > \endverbatim */
  436. /* > */
  437. /* > \param[in] STOREV */
  438. /* > \verbatim */
  439. /* > STOREV is CHARACTER*1 */
  440. /* > Specifies how the vectors which define the elementary */
  441. /* > reflectors are stored (see also Further Details): */
  442. /* > = 'C': columnwise */
  443. /* > = 'R': rowwise */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] N */
  447. /* > \verbatim */
  448. /* > N is INTEGER */
  449. /* > The order of the block reflector H. N >= 0. */
  450. /* > \endverbatim */
  451. /* > */
  452. /* > \param[in] K */
  453. /* > \verbatim */
  454. /* > K is INTEGER */
  455. /* > The order of the triangular factor T (= the number of */
  456. /* > elementary reflectors). K >= 1. */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[in] V */
  460. /* > \verbatim */
  461. /* > V is COMPLEX array, dimension */
  462. /* > (LDV,K) if STOREV = 'C' */
  463. /* > (LDV,N) if STOREV = 'R' */
  464. /* > The matrix V. See further details. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in] LDV */
  468. /* > \verbatim */
  469. /* > LDV is INTEGER */
  470. /* > The leading dimension of the array V. */
  471. /* > If STOREV = 'C', LDV >= f2cmax(1,N); if STOREV = 'R', LDV >= K. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in] TAU */
  475. /* > \verbatim */
  476. /* > TAU is COMPLEX array, dimension (K) */
  477. /* > TAU(i) must contain the scalar factor of the elementary */
  478. /* > reflector H(i). */
  479. /* > \endverbatim */
  480. /* > */
  481. /* > \param[out] T */
  482. /* > \verbatim */
  483. /* > T is COMPLEX array, dimension (LDT,K) */
  484. /* > The k by k triangular factor T of the block reflector. */
  485. /* > If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
  486. /* > lower triangular. The rest of the array is not used. */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[in] LDT */
  490. /* > \verbatim */
  491. /* > LDT is INTEGER */
  492. /* > The leading dimension of the array T. LDT >= K. */
  493. /* > \endverbatim */
  494. /* Authors: */
  495. /* ======== */
  496. /* > \author Univ. of Tennessee */
  497. /* > \author Univ. of California Berkeley */
  498. /* > \author Univ. of Colorado Denver */
  499. /* > \author NAG Ltd. */
  500. /* > \date December 2016 */
  501. /* > \ingroup complexOTHERauxiliary */
  502. /* > \par Further Details: */
  503. /* ===================== */
  504. /* > */
  505. /* > \verbatim */
  506. /* > */
  507. /* > The shape of the matrix V and the storage of the vectors which define */
  508. /* > the H(i) is best illustrated by the following example with n = 5 and */
  509. /* > k = 3. The elements equal to 1 are not stored. */
  510. /* > */
  511. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  512. /* > */
  513. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  514. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  515. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  516. /* > ( v1 v2 v3 ) */
  517. /* > ( v1 v2 v3 ) */
  518. /* > */
  519. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  520. /* > */
  521. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  522. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  523. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  524. /* > ( 1 v3 ) */
  525. /* > ( 1 ) */
  526. /* > \endverbatim */
  527. /* > */
  528. /* ===================================================================== */
  529. /* Subroutine */ int clarft_(char *direct, char *storev, integer *n, integer *
  530. k, complex *v, integer *ldv, complex *tau, complex *t, integer *ldt)
  531. {
  532. /* System generated locals */
  533. integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5;
  534. complex q__1, q__2, q__3;
  535. /* Local variables */
  536. integer i__, j;
  537. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  538. integer *, complex *, complex *, integer *, complex *, integer *,
  539. complex *, complex *, integer *), cgemv_(char *,
  540. integer *, integer *, complex *, complex *, integer *, complex *,
  541. integer *, complex *, complex *, integer *);
  542. extern logical lsame_(char *, char *);
  543. integer lastv;
  544. extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *,
  545. complex *, integer *, complex *, integer *);
  546. integer prevlastv;
  547. extern /* Subroutine */ int mecago_();
  548. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  549. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  550. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  551. /* December 2016 */
  552. /* ===================================================================== */
  553. /* Quick return if possible */
  554. /* Parameter adjustments */
  555. v_dim1 = *ldv;
  556. v_offset = 1 + v_dim1 * 1;
  557. v -= v_offset;
  558. --tau;
  559. t_dim1 = *ldt;
  560. t_offset = 1 + t_dim1 * 1;
  561. t -= t_offset;
  562. /* Function Body */
  563. if (*n == 0) {
  564. return 0;
  565. }
  566. if (lsame_(direct, "F")) {
  567. prevlastv = *n;
  568. i__1 = *k;
  569. for (i__ = 1; i__ <= i__1; ++i__) {
  570. prevlastv = f2cmax(prevlastv,i__);
  571. i__2 = i__;
  572. if (tau[i__2].r == 0.f && tau[i__2].i == 0.f) {
  573. /* H(i) = I */
  574. i__2 = i__;
  575. for (j = 1; j <= i__2; ++j) {
  576. i__3 = j + i__ * t_dim1;
  577. t[i__3].r = 0.f, t[i__3].i = 0.f;
  578. }
  579. } else {
  580. /* general case */
  581. if (lsame_(storev, "C")) {
  582. /* Skip any trailing zeros. */
  583. i__2 = i__ + 1;
  584. for (lastv = *n; lastv >= i__2; --lastv) {
  585. i__3 = lastv + i__ * v_dim1;
  586. if (v[i__3].r != 0.f || v[i__3].i != 0.f) {
  587. myexit_();
  588. }
  589. }
  590. i__2 = i__ - 1;
  591. for (j = 1; j <= i__2; ++j) {
  592. i__3 = j + i__ * t_dim1;
  593. i__4 = i__;
  594. q__2.r = -tau[i__4].r, q__2.i = -tau[i__4].i;
  595. r_cnjg(&q__3, &v[i__ + j * v_dim1]);
  596. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  597. q__2.r * q__3.i + q__2.i * q__3.r;
  598. t[i__3].r = q__1.r, t[i__3].i = q__1.i;
  599. }
  600. j = f2cmin(lastv,prevlastv);
  601. /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) */
  602. i__2 = j - i__;
  603. i__3 = i__ - 1;
  604. i__4 = i__;
  605. q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i;
  606. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &v[i__
  607. + 1 + v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], &
  608. c__1, &c_b1, &t[i__ * t_dim1 + 1], &c__1);
  609. } else {
  610. /* Skip any trailing zeros. */
  611. i__2 = i__ + 1;
  612. for (lastv = *n; lastv >= i__2; --lastv) {
  613. i__3 = i__ + lastv * v_dim1;
  614. if (v[i__3].r != 0.f || v[i__3].i != 0.f) {
  615. myexit_();
  616. }
  617. }
  618. i__2 = i__ - 1;
  619. for (j = 1; j <= i__2; ++j) {
  620. i__3 = j + i__ * t_dim1;
  621. i__4 = i__;
  622. q__2.r = -tau[i__4].r, q__2.i = -tau[i__4].i;
  623. i__5 = j + i__ * v_dim1;
  624. q__1.r = q__2.r * v[i__5].r - q__2.i * v[i__5].i,
  625. q__1.i = q__2.r * v[i__5].i + q__2.i * v[i__5]
  626. .r;
  627. t[i__3].r = q__1.r, t[i__3].i = q__1.i;
  628. }
  629. j = f2cmin(lastv,prevlastv);
  630. /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H */
  631. i__2 = i__ - 1;
  632. i__3 = j - i__;
  633. i__4 = i__;
  634. q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i;
  635. cgemm_("N", "C", &i__2, &c__1, &i__3, &q__1, &v[(i__ + 1)
  636. * v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1],
  637. ldv, &c_b1, &t[i__ * t_dim1 + 1], ldt);
  638. }
  639. /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
  640. i__2 = i__ - 1;
  641. ctrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
  642. t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
  643. i__2 = i__ + i__ * t_dim1;
  644. i__3 = i__;
  645. t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;
  646. if (i__ > 1) {
  647. prevlastv = f2cmax(prevlastv,lastv);
  648. } else {
  649. prevlastv = lastv;
  650. }
  651. }
  652. }
  653. } else {
  654. prevlastv = 1;
  655. for (i__ = *k; i__ >= 1; --i__) {
  656. i__1 = i__;
  657. if (tau[i__1].r == 0.f && tau[i__1].i == 0.f) {
  658. /* H(i) = I */
  659. i__1 = *k;
  660. for (j = i__; j <= i__1; ++j) {
  661. i__2 = j + i__ * t_dim1;
  662. t[i__2].r = 0.f, t[i__2].i = 0.f;
  663. }
  664. } else {
  665. /* general case */
  666. if (i__ < *k) {
  667. if (lsame_(storev, "C")) {
  668. /* Skip any leading zeros. */
  669. i__1 = i__ - 1;
  670. for (lastv = 1; lastv <= i__1; ++lastv) {
  671. i__2 = lastv + i__ * v_dim1;
  672. if (v[i__2].r != 0.f || v[i__2].i != 0.f) {
  673. myexit_();
  674. }
  675. }
  676. i__1 = *k;
  677. for (j = i__ + 1; j <= i__1; ++j) {
  678. i__2 = j + i__ * t_dim1;
  679. i__3 = i__;
  680. q__2.r = -tau[i__3].r, q__2.i = -tau[i__3].i;
  681. r_cnjg(&q__3, &v[*n - *k + i__ + j * v_dim1]);
  682. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i,
  683. q__1.i = q__2.r * q__3.i + q__2.i *
  684. q__3.r;
  685. t[i__2].r = q__1.r, t[i__2].i = q__1.i;
  686. }
  687. j = f2cmax(lastv,prevlastv);
  688. /* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) */
  689. i__1 = *n - *k + i__ - j;
  690. i__2 = *k - i__;
  691. i__3 = i__;
  692. q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
  693. cgemv_("Conjugate transpose", &i__1, &i__2, &q__1, &v[
  694. j + (i__ + 1) * v_dim1], ldv, &v[j + i__ *
  695. v_dim1], &c__1, &c_b1, &t[i__ + 1 + i__ *
  696. t_dim1], &c__1);
  697. } else {
  698. /* Skip any leading zeros. */
  699. i__1 = i__ - 1;
  700. for (lastv = 1; lastv <= i__1; ++lastv) {
  701. i__2 = i__ + lastv * v_dim1;
  702. if (v[i__2].r != 0.f || v[i__2].i != 0.f) {
  703. myexit_();
  704. }
  705. }
  706. i__1 = *k;
  707. for (j = i__ + 1; j <= i__1; ++j) {
  708. i__2 = j + i__ * t_dim1;
  709. i__3 = i__;
  710. q__2.r = -tau[i__3].r, q__2.i = -tau[i__3].i;
  711. i__4 = j + (*n - *k + i__) * v_dim1;
  712. q__1.r = q__2.r * v[i__4].r - q__2.i * v[i__4].i,
  713. q__1.i = q__2.r * v[i__4].i + q__2.i * v[
  714. i__4].r;
  715. t[i__2].r = q__1.r, t[i__2].i = q__1.i;
  716. }
  717. j = f2cmax(lastv,prevlastv);
  718. /* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H */
  719. i__1 = *k - i__;
  720. i__2 = *n - *k + i__ - j;
  721. i__3 = i__;
  722. q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
  723. cgemm_("N", "C", &i__1, &c__1, &i__2, &q__1, &v[i__ +
  724. 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1],
  725. ldv, &c_b1, &t[i__ + 1 + i__ * t_dim1], ldt);
  726. }
  727. /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
  728. i__1 = *k - i__;
  729. ctrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
  730. + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
  731. t_dim1], &c__1)
  732. ;
  733. if (i__ > 1) {
  734. prevlastv = f2cmin(prevlastv,lastv);
  735. } else {
  736. prevlastv = lastv;
  737. }
  738. }
  739. i__1 = i__ + i__ * t_dim1;
  740. i__2 = i__;
  741. t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i;
  742. }
  743. }
  744. }
  745. return 0;
  746. /* End of CLARFT */
  747. } /* clarft_ */