You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clamtsqr.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__0 = 0;
  381. /* > \brief \b CLAMTSQR */
  382. /* Definition: */
  383. /* =========== */
  384. /* SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, */
  385. /* $ LDT, C, LDC, WORK, LWORK, INFO ) */
  386. /* CHARACTER SIDE, TRANS */
  387. /* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC */
  388. /* COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), */
  389. /* $ T( LDT, * ) */
  390. /* > \par Purpose: */
  391. /* ============= */
  392. /* > */
  393. /* > \verbatim */
  394. /* > */
  395. /* > CLAMTSQR overwrites the general complex M-by-N matrix C with */
  396. /* > */
  397. /* > */
  398. /* > SIDE = 'L' SIDE = 'R' */
  399. /* > TRANS = 'N': Q * C C * Q */
  400. /* > TRANS = 'C': Q**H * C C * Q**H */
  401. /* > where Q is a real orthogonal matrix defined as the product */
  402. /* > of blocked elementary reflectors computed by tall skinny */
  403. /* > QR factorization (CLATSQR) */
  404. /* > \endverbatim */
  405. /* Arguments: */
  406. /* ========== */
  407. /* > \param[in] SIDE */
  408. /* > \verbatim */
  409. /* > SIDE is CHARACTER*1 */
  410. /* > = 'L': apply Q or Q**H from the Left; */
  411. /* > = 'R': apply Q or Q**H from the Right. */
  412. /* > \endverbatim */
  413. /* > */
  414. /* > \param[in] TRANS */
  415. /* > \verbatim */
  416. /* > TRANS is CHARACTER*1 */
  417. /* > = 'N': No transpose, apply Q; */
  418. /* > = 'C': Conjugate Transpose, apply Q**H. */
  419. /* > \endverbatim */
  420. /* > */
  421. /* > \param[in] M */
  422. /* > \verbatim */
  423. /* > M is INTEGER */
  424. /* > The number of rows of the matrix A. M >=0. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] N */
  428. /* > \verbatim */
  429. /* > N is INTEGER */
  430. /* > The number of columns of the matrix C. M >= N >= 0. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] K */
  434. /* > \verbatim */
  435. /* > K is INTEGER */
  436. /* > The number of elementary reflectors whose product defines */
  437. /* > the matrix Q. */
  438. /* > N >= K >= 0; */
  439. /* > */
  440. /* > \endverbatim */
  441. /* > */
  442. /* > \param[in] MB */
  443. /* > \verbatim */
  444. /* > MB is INTEGER */
  445. /* > The block size to be used in the blocked QR. */
  446. /* > MB > N. (must be the same as DLATSQR) */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[in] NB */
  450. /* > \verbatim */
  451. /* > NB is INTEGER */
  452. /* > The column block size to be used in the blocked QR. */
  453. /* > N >= NB >= 1. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] A */
  457. /* > \verbatim */
  458. /* > A is COMPLEX array, dimension (LDA,K) */
  459. /* > The i-th column must contain the vector which defines the */
  460. /* > blockedelementary reflector H(i), for i = 1,2,...,k, as */
  461. /* > returned by DLATSQR in the first k columns of */
  462. /* > its array argument A. */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in] LDA */
  466. /* > \verbatim */
  467. /* > LDA is INTEGER */
  468. /* > The leading dimension of the array A. */
  469. /* > If SIDE = 'L', LDA >= f2cmax(1,M); */
  470. /* > if SIDE = 'R', LDA >= f2cmax(1,N). */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] T */
  474. /* > \verbatim */
  475. /* > T is COMPLEX array, dimension */
  476. /* > ( N * Number of blocks(CEIL(M-K/MB-K)), */
  477. /* > The blocked upper triangular block reflectors stored in compact form */
  478. /* > as a sequence of upper triangular blocks. See below */
  479. /* > for further details. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDT */
  483. /* > \verbatim */
  484. /* > LDT is INTEGER */
  485. /* > The leading dimension of the array T. LDT >= NB. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in,out] C */
  489. /* > \verbatim */
  490. /* > C is COMPLEX array, dimension (LDC,N) */
  491. /* > On entry, the M-by-N matrix C. */
  492. /* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[in] LDC */
  496. /* > \verbatim */
  497. /* > LDC is INTEGER */
  498. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  499. /* > \endverbatim */
  500. /* > */
  501. /* > \param[out] WORK */
  502. /* > \verbatim */
  503. /* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
  504. /* > */
  505. /* > \endverbatim */
  506. /* > \param[in] LWORK */
  507. /* > \verbatim */
  508. /* > LWORK is INTEGER */
  509. /* > The dimension of the array WORK. */
  510. /* > */
  511. /* > If SIDE = 'L', LWORK >= f2cmax(1,N)*NB; */
  512. /* > if SIDE = 'R', LWORK >= f2cmax(1,MB)*NB. */
  513. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  514. /* > only calculates the optimal size of the WORK array, returns */
  515. /* > this value as the first entry of the WORK array, and no error */
  516. /* > message related to LWORK is issued by XERBLA. */
  517. /* > */
  518. /* > \endverbatim */
  519. /* > \param[out] INFO */
  520. /* > \verbatim */
  521. /* > INFO is INTEGER */
  522. /* > = 0: successful exit */
  523. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  524. /* > \endverbatim */
  525. /* Authors: */
  526. /* ======== */
  527. /* > \author Univ. of Tennessee */
  528. /* > \author Univ. of California Berkeley */
  529. /* > \author Univ. of Colorado Denver */
  530. /* > \author NAG Ltd. */
  531. /* > \par Further Details: */
  532. /* ===================== */
  533. /* > */
  534. /* > \verbatim */
  535. /* > Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, */
  536. /* > representing Q as a product of other orthogonal matrices */
  537. /* > Q = Q(1) * Q(2) * . . . * Q(k) */
  538. /* > where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: */
  539. /* > Q(1) zeros out the subdiagonal entries of rows 1:MB of A */
  540. /* > Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A */
  541. /* > Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A */
  542. /* > . . . */
  543. /* > */
  544. /* > Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors */
  545. /* > stored under the diagonal of rows 1:MB of A, and by upper triangular */
  546. /* > block reflectors, stored in array T(1:LDT,1:N). */
  547. /* > For more information see Further Details in GEQRT. */
  548. /* > */
  549. /* > Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors */
  550. /* > stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular */
  551. /* > block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). */
  552. /* > The last Q(k) may use fewer rows. */
  553. /* > For more information see Further Details in TPQRT. */
  554. /* > */
  555. /* > For more details of the overall algorithm, see the description of */
  556. /* > Sequential TSQR in Section 2.2 of [1]. */
  557. /* > */
  558. /* > [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations, */
  559. /* > J. Demmel, L. Grigori, M. Hoemmen, J. Langou, */
  560. /* > SIAM J. Sci. Comput, vol. 34, no. 1, 2012 */
  561. /* > \endverbatim */
  562. /* > */
  563. /* ===================================================================== */
  564. /* Subroutine */ int clamtsqr_(char *side, char *trans, integer *m, integer *
  565. n, integer *k, integer *mb, integer *nb, complex *a, integer *lda,
  566. complex *t, integer *ldt, complex *c__, integer *ldc, complex *work,
  567. integer *lwork, integer *info)
  568. {
  569. /* System generated locals */
  570. integer a_dim1, a_offset, c_dim1, c_offset, t_dim1, t_offset, i__1, i__2,
  571. i__3;
  572. /* Local variables */
  573. logical left, tran;
  574. integer i__;
  575. extern logical lsame_(char *, char *);
  576. logical right;
  577. integer ii, kk, lw;
  578. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  579. logical notran, lquery;
  580. integer ctr;
  581. extern /* Subroutine */ int cgemqrt_(char *, char *, integer *, integer *,
  582. integer *, integer *, complex *, integer *, complex *, integer *,
  583. complex *, integer *, complex *, integer *),
  584. ctpmqrt_(char *, char *, integer *, integer *, integer *, integer
  585. *, integer *, complex *, integer *, complex *, integer *, complex
  586. *, integer *, complex *, integer *, complex *, integer *);
  587. /* -- LAPACK computational routine (version 3.7.1) -- */
  588. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  589. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  590. /* June 2017 */
  591. /* ===================================================================== */
  592. /* Test the input arguments */
  593. /* Parameter adjustments */
  594. a_dim1 = *lda;
  595. a_offset = 1 + a_dim1 * 1;
  596. a -= a_offset;
  597. t_dim1 = *ldt;
  598. t_offset = 1 + t_dim1 * 1;
  599. t -= t_offset;
  600. c_dim1 = *ldc;
  601. c_offset = 1 + c_dim1 * 1;
  602. c__ -= c_offset;
  603. --work;
  604. /* Function Body */
  605. lquery = *lwork < 0;
  606. notran = lsame_(trans, "N");
  607. tran = lsame_(trans, "C");
  608. left = lsame_(side, "L");
  609. right = lsame_(side, "R");
  610. if (left) {
  611. lw = *n * *nb;
  612. } else {
  613. lw = *m * *nb;
  614. }
  615. *info = 0;
  616. if (! left && ! right) {
  617. *info = -1;
  618. } else if (! tran && ! notran) {
  619. *info = -2;
  620. } else if (*m < 0) {
  621. *info = -3;
  622. } else if (*n < 0) {
  623. *info = -4;
  624. } else if (*k < 0) {
  625. *info = -5;
  626. } else if (*lda < f2cmax(1,*k)) {
  627. *info = -9;
  628. } else if (*ldt < f2cmax(1,*nb)) {
  629. *info = -11;
  630. } else if (*ldc < f2cmax(1,*m)) {
  631. *info = -13;
  632. } else if (*lwork < f2cmax(1,lw) && ! lquery) {
  633. *info = -15;
  634. }
  635. /* Determine the block size if it is tall skinny or short and wide */
  636. if (*info == 0) {
  637. work[1].r = (real) lw, work[1].i = 0.f;
  638. }
  639. if (*info != 0) {
  640. i__1 = -(*info);
  641. xerbla_("CLAMTSQR", &i__1, (ftnlen)8);
  642. return 0;
  643. } else if (lquery) {
  644. return 0;
  645. }
  646. /* Quick return if possible */
  647. /* Computing MIN */
  648. i__1 = f2cmin(*m,*n);
  649. if (f2cmin(i__1,*k) == 0) {
  650. return 0;
  651. }
  652. /* Computing MAX */
  653. i__1 = f2cmax(*m,*n);
  654. if (*mb <= *k || *mb >= f2cmax(i__1,*k)) {
  655. cgemqrt_(side, trans, m, n, k, nb, &a[a_offset], lda, &t[t_offset],
  656. ldt, &c__[c_offset], ldc, &work[1], info);
  657. return 0;
  658. }
  659. if (left && notran) {
  660. /* Multiply Q to the last block of C */
  661. kk = (*m - *k) % (*mb - *k);
  662. ctr = (*m - *k) / (*mb - *k);
  663. if (kk > 0) {
  664. ii = *m - kk + 1;
  665. ctpmqrt_("L", "N", &kk, n, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
  666. (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc,
  667. &c__[ii + c_dim1], ldc, &work[1], info);
  668. } else {
  669. ii = *m + 1;
  670. }
  671. i__1 = *mb + 1;
  672. i__2 = -(*mb - *k);
  673. for (i__ = ii - (*mb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__
  674. += i__2) {
  675. /* Multiply Q to the current block of C (I:I+MB,1:N) */
  676. --ctr;
  677. i__3 = *mb - *k;
  678. ctpmqrt_("L", "N", &i__3, n, k, &c__0, nb, &a[i__ + a_dim1], lda,
  679. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  680. ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
  681. }
  682. /* Multiply Q to the first block of C (1:MB,1:N) */
  683. cgemqrt_("L", "N", mb, n, k, nb, &a[a_dim1 + 1], lda, &t[t_offset],
  684. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  685. } else if (left && tran) {
  686. /* Multiply Q to the first block of C */
  687. kk = (*m - *k) % (*mb - *k);
  688. ii = *m - kk + 1;
  689. ctr = 1;
  690. cgemqrt_("L", "C", mb, n, k, nb, &a[a_dim1 + 1], lda, &t[t_offset],
  691. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  692. i__2 = ii - *mb + *k;
  693. i__1 = *mb - *k;
  694. for (i__ = *mb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
  695. {
  696. /* Multiply Q to the current block of C (I:I+MB,1:N) */
  697. i__3 = *mb - *k;
  698. ctpmqrt_("L", "C", &i__3, n, k, &c__0, nb, &a[i__ + a_dim1], lda,
  699. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  700. ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
  701. ++ctr;
  702. }
  703. if (ii <= *m) {
  704. /* Multiply Q to the last block of C */
  705. ctpmqrt_("L", "C", &kk, n, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
  706. (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc,
  707. &c__[ii + c_dim1], ldc, &work[1], info);
  708. }
  709. } else if (right && tran) {
  710. /* Multiply Q to the last block of C */
  711. kk = (*n - *k) % (*mb - *k);
  712. ctr = (*n - *k) / (*mb - *k);
  713. if (kk > 0) {
  714. ii = *n - kk + 1;
  715. ctpmqrt_("R", "C", m, &kk, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
  716. (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc,
  717. &c__[ii * c_dim1 + 1], ldc, &work[1], info);
  718. } else {
  719. ii = *n + 1;
  720. }
  721. i__1 = *mb + 1;
  722. i__2 = -(*mb - *k);
  723. for (i__ = ii - (*mb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__
  724. += i__2) {
  725. /* Multiply Q to the current block of C (1:M,I:I+MB) */
  726. --ctr;
  727. i__3 = *mb - *k;
  728. ctpmqrt_("R", "C", m, &i__3, k, &c__0, nb, &a[i__ + a_dim1], lda,
  729. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  730. ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
  731. }
  732. /* Multiply Q to the first block of C (1:M,1:MB) */
  733. cgemqrt_("R", "C", m, mb, k, nb, &a[a_dim1 + 1], lda, &t[t_offset],
  734. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  735. } else if (right && notran) {
  736. /* Multiply Q to the first block of C */
  737. kk = (*n - *k) % (*mb - *k);
  738. ii = *n - kk + 1;
  739. ctr = 1;
  740. cgemqrt_("R", "N", m, mb, k, nb, &a[a_dim1 + 1], lda, &t[t_offset],
  741. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  742. i__2 = ii - *mb + *k;
  743. i__1 = *mb - *k;
  744. for (i__ = *mb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
  745. {
  746. /* Multiply Q to the current block of C (1:M,I:I+MB) */
  747. i__3 = *mb - *k;
  748. ctpmqrt_("R", "N", m, &i__3, k, &c__0, nb, &a[i__ + a_dim1], lda,
  749. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  750. ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
  751. ++ctr;
  752. }
  753. if (ii <= *n) {
  754. /* Multiply Q to the last block of C */
  755. ctpmqrt_("R", "N", m, &kk, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
  756. (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc,
  757. &c__[ii * c_dim1 + 1], ldc, &work[1], info);
  758. }
  759. }
  760. work[1].r = (real) lw, work[1].i = 0.f;
  761. return 0;
  762. /* End of CLAMTSQR */
  763. } /* clamtsqr_ */