You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clahef_aa.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static complex c_b2 = {1.f,0.f};
  382. static integer c__1 = 1;
  383. /* > \brief \b CLAHEF_AA */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CLAHEF_AA + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_
  390. aa.f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_
  393. aa.f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_
  396. aa.f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  402. /* H, LDH, WORK ) */
  403. /* CHARACTER UPLO */
  404. /* INTEGER J1, M, NB, LDA, LDH */
  405. /* INTEGER IPIV( * ) */
  406. /* COMPLEX A( LDA, * ), H( LDH, * ), WORK( * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > CLAHEF_AA factorizes a panel of a complex hermitian matrix A using */
  413. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  414. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  415. /* > */
  416. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  417. /* > last row, or column, of the previous panel. The first row, or column, */
  418. /* > of A is set to be the first row, or column, of an identity matrix, */
  419. /* > which is used to factorize the first panel. */
  420. /* > */
  421. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  422. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  423. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  424. /* > */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] UPLO */
  429. /* > \verbatim */
  430. /* > UPLO is CHARACTER*1 */
  431. /* > = 'U': Upper triangle of A is stored; */
  432. /* > = 'L': Lower triangle of A is stored. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] J1 */
  436. /* > \verbatim */
  437. /* > J1 is INTEGER */
  438. /* > The location of the first row, or column, of the panel */
  439. /* > within the submatrix of A, passed to this routine, e.g., */
  440. /* > when called by CHETRF_AA, for the first panel, J1 is 1, */
  441. /* > while for the remaining panels, J1 is 2. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] M */
  445. /* > \verbatim */
  446. /* > M is INTEGER */
  447. /* > The dimension of the submatrix. M >= 0. */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] NB */
  451. /* > \verbatim */
  452. /* > NB is INTEGER */
  453. /* > The dimension of the panel to be facotorized. */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in,out] A */
  457. /* > \verbatim */
  458. /* > A is COMPLEX array, dimension (LDA,M) for */
  459. /* > the first panel, while dimension (LDA,M+1) for the */
  460. /* > remaining panels. */
  461. /* > */
  462. /* > On entry, A contains the last row, or column, of */
  463. /* > the previous panel, and the trailing submatrix of A */
  464. /* > to be factorized, except for the first panel, only */
  465. /* > the panel is passed. */
  466. /* > */
  467. /* > On exit, the leading panel is factorized. */
  468. /* > \endverbatim */
  469. /* > */
  470. /* > \param[in] LDA */
  471. /* > \verbatim */
  472. /* > LDA is INTEGER */
  473. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  474. /* > \endverbatim */
  475. /* > */
  476. /* > \param[out] IPIV */
  477. /* > \verbatim */
  478. /* > IPIV is INTEGER array, dimension (N) */
  479. /* > Details of the row and column interchanges, */
  480. /* > the row and column k were interchanged with the row and */
  481. /* > column IPIV(k). */
  482. /* > \endverbatim */
  483. /* > */
  484. /* > \param[in,out] H */
  485. /* > \verbatim */
  486. /* > H is COMPLEX workspace, dimension (LDH,NB). */
  487. /* > */
  488. /* > \endverbatim */
  489. /* > */
  490. /* > \param[in] LDH */
  491. /* > \verbatim */
  492. /* > LDH is INTEGER */
  493. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  494. /* > \endverbatim */
  495. /* > */
  496. /* > \param[out] WORK */
  497. /* > \verbatim */
  498. /* > WORK is COMPLEX workspace, dimension (M). */
  499. /* > \endverbatim */
  500. /* > */
  501. /* Authors: */
  502. /* ======== */
  503. /* > \author Univ. of Tennessee */
  504. /* > \author Univ. of California Berkeley */
  505. /* > \author Univ. of Colorado Denver */
  506. /* > \author NAG Ltd. */
  507. /* > \date November 2017 */
  508. /* > \ingroup complexSYcomputational */
  509. /* ===================================================================== */
  510. /* Subroutine */ int clahef_aa_(char *uplo, integer *j1, integer *m, integer
  511. *nb, complex *a, integer *lda, integer *ipiv, complex *h__, integer *
  512. ldh, complex *work)
  513. {
  514. /* System generated locals */
  515. integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
  516. real r__1;
  517. complex q__1, q__2;
  518. /* Local variables */
  519. integer j, k;
  520. complex alpha;
  521. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  522. integer *);
  523. extern logical lsame_(char *, char *);
  524. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  525. , complex *, integer *, complex *, integer *, complex *, complex *
  526. , integer *), ccopy_(integer *, complex *, integer *,
  527. complex *, integer *), cswap_(integer *, complex *, integer *,
  528. complex *, integer *), caxpy_(integer *, complex *, complex *,
  529. integer *, complex *, integer *);
  530. integer i1, k1, i2, mj;
  531. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);
  532. extern integer icamax_(integer *, complex *, integer *);
  533. extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
  534. *, complex *, complex *, integer *);
  535. complex piv;
  536. /* -- LAPACK computational routine (version 3.8.0) -- */
  537. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  538. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  539. /* November 2017 */
  540. /* ===================================================================== */
  541. /* Parameter adjustments */
  542. a_dim1 = *lda;
  543. a_offset = 1 + a_dim1 * 1;
  544. a -= a_offset;
  545. --ipiv;
  546. h_dim1 = *ldh;
  547. h_offset = 1 + h_dim1 * 1;
  548. h__ -= h_offset;
  549. --work;
  550. /* Function Body */
  551. j = 1;
  552. /* K1 is the first column of the panel to be factorized */
  553. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  554. k1 = 2 - *j1 + 1;
  555. if (lsame_(uplo, "U")) {
  556. /* ..................................................... */
  557. /* Factorize A as U**T*D*U using the upper triangle of A */
  558. /* ..................................................... */
  559. L10:
  560. if (j > f2cmin(*m,*nb)) {
  561. goto L20;
  562. }
  563. /* K is the column to be factorized */
  564. /* when being called from CHETRF_AA, */
  565. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  566. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  567. k = *j1 + j - 1;
  568. if (j == *m) {
  569. /* Only need to compute T(J, J) */
  570. mj = 1;
  571. } else {
  572. mj = *m - j + 1;
  573. }
  574. /* H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J), */
  575. /* where H(J:N, J) has been initialized to be A(J, J:N) */
  576. if (k > 2) {
  577. /* K is the column to be factorized */
  578. /* > for the first block column, K is J, skipping the first two */
  579. /* columns */
  580. /* > for the rest of the columns, K is J+1, skipping only the */
  581. /* first column */
  582. i__1 = j - k1;
  583. clacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
  584. i__1 = j - k1;
  585. q__1.r = -1.f, q__1.i = 0.f;
  586. cgemv_("No transpose", &mj, &i__1, &q__1, &h__[j + k1 * h_dim1],
  587. ldh, &a[j * a_dim1 + 1], &c__1, &c_b2, &h__[j + j *
  588. h_dim1], &c__1);
  589. i__1 = j - k1;
  590. clacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
  591. }
  592. /* Copy H(i:n, i) into WORK */
  593. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  594. if (j > k1) {
  595. /* Compute WORK := WORK - L(J-1, J:N) * T(J-1,J), */
  596. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N) */
  597. r_cnjg(&q__2, &a[k - 1 + j * a_dim1]);
  598. q__1.r = -q__2.r, q__1.i = -q__2.i;
  599. alpha.r = q__1.r, alpha.i = q__1.i;
  600. caxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  601. }
  602. /* Set A(J, J) = T(J, J) */
  603. i__1 = k + j * a_dim1;
  604. r__1 = work[1].r;
  605. a[i__1].r = r__1, a[i__1].i = 0.f;
  606. if (j < *m) {
  607. /* Compute WORK(2:N) = T(J, J) L(J, (J+1):N) */
  608. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N) */
  609. if (k > 1) {
  610. i__1 = k + j * a_dim1;
  611. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  612. alpha.r = q__1.r, alpha.i = q__1.i;
  613. i__1 = *m - j;
  614. caxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  615. work[2], &c__1);
  616. }
  617. /* Find f2cmax(|WORK(2:n)|) */
  618. i__1 = *m - j;
  619. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  620. i__1 = i2;
  621. piv.r = work[i__1].r, piv.i = work[i__1].i;
  622. /* Apply hermitian pivot */
  623. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  624. /* Swap WORK(I1) and WORK(I2) */
  625. i1 = 2;
  626. i__1 = i2;
  627. i__2 = i1;
  628. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  629. i__1 = i1;
  630. work[i__1].r = piv.r, work[i__1].i = piv.i;
  631. /* Swap A(I1, I1+1:N) with A(I1+1:N, I2) */
  632. i1 = i1 + j - 1;
  633. i2 = i2 + j - 1;
  634. i__1 = i2 - i1 - 1;
  635. cswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  636. j1 + i1 + i2 * a_dim1], &c__1);
  637. i__1 = i2 - i1;
  638. clacgv_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda);
  639. i__1 = i2 - i1 - 1;
  640. clacgv_(&i__1, &a[*j1 + i1 + i2 * a_dim1], &c__1);
  641. /* Swap A(I1, I2+1:N) with A(I2, I2+1:N) */
  642. if (i2 < *m) {
  643. i__1 = *m - i2;
  644. cswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  645. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  646. }
  647. /* Swap A(I1, I1) with A(I2,I2) */
  648. i__1 = i1 + *j1 - 1 + i1 * a_dim1;
  649. piv.r = a[i__1].r, piv.i = a[i__1].i;
  650. i__1 = *j1 + i1 - 1 + i1 * a_dim1;
  651. i__2 = *j1 + i2 - 1 + i2 * a_dim1;
  652. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  653. i__1 = *j1 + i2 - 1 + i2 * a_dim1;
  654. a[i__1].r = piv.r, a[i__1].i = piv.i;
  655. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  656. i__1 = i1 - 1;
  657. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  658. ipiv[i1] = i2;
  659. if (i1 > k1 - 1) {
  660. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  661. /* skipping the first column */
  662. i__1 = i1 - k1 + 1;
  663. cswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  664. + 1], &c__1);
  665. }
  666. } else {
  667. ipiv[j + 1] = j + 1;
  668. }
  669. /* Set A(J, J+1) = T(J, J+1) */
  670. i__1 = k + (j + 1) * a_dim1;
  671. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  672. if (j < *nb) {
  673. /* Copy A(J+1:N, J+1) into H(J:N, J), */
  674. i__1 = *m - j;
  675. ccopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  676. (j + 1) * h_dim1], &c__1);
  677. }
  678. /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
  679. /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
  680. if (j < *m - 1) {
  681. i__1 = k + (j + 1) * a_dim1;
  682. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  683. c_div(&q__1, &c_b2, &a[k + (j + 1) * a_dim1]);
  684. alpha.r = q__1.r, alpha.i = q__1.i;
  685. i__1 = *m - j - 1;
  686. ccopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  687. lda);
  688. i__1 = *m - j - 1;
  689. cscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  690. } else {
  691. i__1 = *m - j - 1;
  692. claset_("Full", &c__1, &i__1, &c_b1, &c_b1, &a[k + (j + 2)
  693. * a_dim1], lda);
  694. }
  695. }
  696. }
  697. ++j;
  698. goto L10;
  699. L20:
  700. ;
  701. } else {
  702. /* ..................................................... */
  703. /* Factorize A as L*D*L**T using the lower triangle of A */
  704. /* ..................................................... */
  705. L30:
  706. if (j > f2cmin(*m,*nb)) {
  707. goto L40;
  708. }
  709. /* K is the column to be factorized */
  710. /* when being called from CHETRF_AA, */
  711. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  712. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  713. k = *j1 + j - 1;
  714. if (j == *m) {
  715. /* Only need to compute T(J, J) */
  716. mj = 1;
  717. } else {
  718. mj = *m - j + 1;
  719. }
  720. /* H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T, */
  721. /* where H(J:N, J) has been initialized to be A(J:N, J) */
  722. if (k > 2) {
  723. /* K is the column to be factorized */
  724. /* > for the first block column, K is J, skipping the first two */
  725. /* columns */
  726. /* > for the rest of the columns, K is J+1, skipping only the */
  727. /* first column */
  728. i__1 = j - k1;
  729. clacgv_(&i__1, &a[j + a_dim1], lda);
  730. i__1 = j - k1;
  731. q__1.r = -1.f, q__1.i = 0.f;
  732. cgemv_("No transpose", &mj, &i__1, &q__1, &h__[j + k1 * h_dim1],
  733. ldh, &a[j + a_dim1], lda, &c_b2, &h__[j + j * h_dim1], &
  734. c__1);
  735. i__1 = j - k1;
  736. clacgv_(&i__1, &a[j + a_dim1], lda);
  737. }
  738. /* Copy H(J:N, J) into WORK */
  739. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  740. if (j > k1) {
  741. /* Compute WORK := WORK - L(J:N, J-1) * T(J-1,J), */
  742. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  743. r_cnjg(&q__2, &a[j + (k - 1) * a_dim1]);
  744. q__1.r = -q__2.r, q__1.i = -q__2.i;
  745. alpha.r = q__1.r, alpha.i = q__1.i;
  746. caxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  747. c__1);
  748. }
  749. /* Set A(J, J) = T(J, J) */
  750. i__1 = j + k * a_dim1;
  751. r__1 = work[1].r;
  752. a[i__1].r = r__1, a[i__1].i = 0.f;
  753. if (j < *m) {
  754. /* Compute WORK(2:N) = T(J, J) L((J+1):N, J) */
  755. /* where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J) */
  756. if (k > 1) {
  757. i__1 = j + k * a_dim1;
  758. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  759. alpha.r = q__1.r, alpha.i = q__1.i;
  760. i__1 = *m - j;
  761. caxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  762. work[2], &c__1);
  763. }
  764. /* Find f2cmax(|WORK(2:n)|) */
  765. i__1 = *m - j;
  766. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  767. i__1 = i2;
  768. piv.r = work[i__1].r, piv.i = work[i__1].i;
  769. /* Apply hermitian pivot */
  770. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  771. /* Swap WORK(I1) and WORK(I2) */
  772. i1 = 2;
  773. i__1 = i2;
  774. i__2 = i1;
  775. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  776. i__1 = i1;
  777. work[i__1].r = piv.r, work[i__1].i = piv.i;
  778. /* Swap A(I1+1:N, I1) with A(I2, I1+1:N) */
  779. i1 = i1 + j - 1;
  780. i2 = i2 + j - 1;
  781. i__1 = i2 - i1 - 1;
  782. cswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  783. i2 + (*j1 + i1) * a_dim1], lda);
  784. i__1 = i2 - i1;
  785. clacgv_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1);
  786. i__1 = i2 - i1 - 1;
  787. clacgv_(&i__1, &a[i2 + (*j1 + i1) * a_dim1], lda);
  788. /* Swap A(I2+1:N, I1) with A(I2+1:N, I2) */
  789. if (i2 < *m) {
  790. i__1 = *m - i2;
  791. cswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  792. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  793. }
  794. /* Swap A(I1, I1) with A(I2, I2) */
  795. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  796. piv.r = a[i__1].r, piv.i = a[i__1].i;
  797. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  798. i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
  799. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  800. i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
  801. a[i__1].r = piv.r, a[i__1].i = piv.i;
  802. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  803. i__1 = i1 - 1;
  804. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  805. ipiv[i1] = i2;
  806. if (i1 > k1 - 1) {
  807. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  808. /* skipping the first column */
  809. i__1 = i1 - k1 + 1;
  810. cswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  811. }
  812. } else {
  813. ipiv[j + 1] = j + 1;
  814. }
  815. /* Set A(J+1, J) = T(J+1, J) */
  816. i__1 = j + 1 + k * a_dim1;
  817. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  818. if (j < *nb) {
  819. /* Copy A(J+1:N, J+1) into H(J+1:N, J), */
  820. i__1 = *m - j;
  821. ccopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  822. + (j + 1) * h_dim1], &c__1);
  823. }
  824. /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
  825. /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
  826. if (j < *m - 1) {
  827. i__1 = j + 1 + k * a_dim1;
  828. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  829. c_div(&q__1, &c_b2, &a[j + 1 + k * a_dim1]);
  830. alpha.r = q__1.r, alpha.i = q__1.i;
  831. i__1 = *m - j - 1;
  832. ccopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  833. c__1);
  834. i__1 = *m - j - 1;
  835. cscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  836. } else {
  837. i__1 = *m - j - 1;
  838. claset_("Full", &i__1, &c__1, &c_b1, &c_b1, &a[j + 2 + k *
  839. a_dim1], lda);
  840. }
  841. }
  842. }
  843. ++j;
  844. goto L30;
  845. L40:
  846. ;
  847. }
  848. return 0;
  849. /* End of CLAHEF_AA */
  850. } /* clahef_aa__ */