You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claed0.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__9 = 9;
  381. static integer c__0 = 0;
  382. static integer c__2 = 2;
  383. static integer c__1 = 1;
  384. /* > \brief \b CLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced
  385. symmetric tridiagonal matrix using the divide and conquer method. */
  386. /* =========== DOCUMENTATION =========== */
  387. /* Online html documentation available at */
  388. /* http://www.netlib.org/lapack/explore-html/ */
  389. /* > \htmlonly */
  390. /* > Download CLAED0 + dependencies */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed0.
  392. f"> */
  393. /* > [TGZ]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed0.
  395. f"> */
  396. /* > [ZIP]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed0.
  398. f"> */
  399. /* > [TXT]</a> */
  400. /* > \endhtmlonly */
  401. /* Definition: */
  402. /* =========== */
  403. /* SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, */
  404. /* IWORK, INFO ) */
  405. /* INTEGER INFO, LDQ, LDQS, N, QSIZ */
  406. /* INTEGER IWORK( * ) */
  407. /* REAL D( * ), E( * ), RWORK( * ) */
  408. /* COMPLEX Q( LDQ, * ), QSTORE( LDQS, * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > Using the divide and conquer method, CLAED0 computes all eigenvalues */
  415. /* > of a symmetric tridiagonal matrix which is one diagonal block of */
  416. /* > those from reducing a dense or band Hermitian matrix and */
  417. /* > corresponding eigenvectors of the dense or band matrix. */
  418. /* > \endverbatim */
  419. /* Arguments: */
  420. /* ========== */
  421. /* > \param[in] QSIZ */
  422. /* > \verbatim */
  423. /* > QSIZ is INTEGER */
  424. /* > The dimension of the unitary matrix used to reduce */
  425. /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in] N */
  429. /* > \verbatim */
  430. /* > N is INTEGER */
  431. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  432. /* > \endverbatim */
  433. /* > */
  434. /* > \param[in,out] D */
  435. /* > \verbatim */
  436. /* > D is REAL array, dimension (N) */
  437. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  438. /* > On exit, the eigenvalues in ascending order. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in,out] E */
  442. /* > \verbatim */
  443. /* > E is REAL array, dimension (N-1) */
  444. /* > On entry, the off-diagonal elements of the tridiagonal matrix. */
  445. /* > On exit, E has been destroyed. */
  446. /* > \endverbatim */
  447. /* > */
  448. /* > \param[in,out] Q */
  449. /* > \verbatim */
  450. /* > Q is COMPLEX array, dimension (LDQ,N) */
  451. /* > On entry, Q must contain an QSIZ x N matrix whose columns */
  452. /* > unitarily orthonormal. It is a part of the unitary matrix */
  453. /* > that reduces the full dense Hermitian matrix to a */
  454. /* > (reducible) symmetric tridiagonal matrix. */
  455. /* > \endverbatim */
  456. /* > */
  457. /* > \param[in] LDQ */
  458. /* > \verbatim */
  459. /* > LDQ is INTEGER */
  460. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  461. /* > \endverbatim */
  462. /* > */
  463. /* > \param[out] IWORK */
  464. /* > \verbatim */
  465. /* > IWORK is INTEGER array, */
  466. /* > the dimension of IWORK must be at least */
  467. /* > 6 + 6*N + 5*N*lg N */
  468. /* > ( lg( N ) = smallest integer k */
  469. /* > such that 2^k >= N ) */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[out] RWORK */
  473. /* > \verbatim */
  474. /* > RWORK is REAL array, */
  475. /* > dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
  476. /* > ( lg( N ) = smallest integer k */
  477. /* > such that 2^k >= N ) */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] QSTORE */
  481. /* > \verbatim */
  482. /* > QSTORE is COMPLEX array, dimension (LDQS, N) */
  483. /* > Used to store parts of */
  484. /* > the eigenvector matrix when the updating matrix multiplies */
  485. /* > take place. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in] LDQS */
  489. /* > \verbatim */
  490. /* > LDQS is INTEGER */
  491. /* > The leading dimension of the array QSTORE. */
  492. /* > LDQS >= f2cmax(1,N). */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[out] INFO */
  496. /* > \verbatim */
  497. /* > INFO is INTEGER */
  498. /* > = 0: successful exit. */
  499. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  500. /* > > 0: The algorithm failed to compute an eigenvalue while */
  501. /* > working on the submatrix lying in rows and columns */
  502. /* > INFO/(N+1) through mod(INFO,N+1). */
  503. /* > \endverbatim */
  504. /* Authors: */
  505. /* ======== */
  506. /* > \author Univ. of Tennessee */
  507. /* > \author Univ. of California Berkeley */
  508. /* > \author Univ. of Colorado Denver */
  509. /* > \author NAG Ltd. */
  510. /* > \date December 2016 */
  511. /* > \ingroup complexOTHERcomputational */
  512. /* ===================================================================== */
  513. /* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e,
  514. complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork,
  515. integer *iwork, integer *info)
  516. {
  517. /* System generated locals */
  518. integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
  519. real r__1;
  520. /* Local variables */
  521. real temp;
  522. integer curr, i__, j, k, iperm;
  523. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  524. complex *, integer *);
  525. integer indxq, iwrem;
  526. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  527. integer *);
  528. integer iqptr;
  529. extern /* Subroutine */ int claed7_(integer *, integer *, integer *,
  530. integer *, integer *, integer *, real *, complex *, integer *,
  531. real *, integer *, real *, integer *, integer *, integer *,
  532. integer *, integer *, real *, complex *, real *, integer *,
  533. integer *);
  534. integer tlvls, ll, iq;
  535. extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
  536. integer *, real *, integer *, complex *, integer *, real *);
  537. integer igivcl;
  538. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  539. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  540. integer *, integer *, ftnlen, ftnlen);
  541. integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt,
  542. smlsiz;
  543. extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
  544. real *, integer *, real *, integer *);
  545. integer lgn, msd2, smm1, spm1, spm2;
  546. /* -- LAPACK computational routine (version 3.7.0) -- */
  547. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  548. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  549. /* December 2016 */
  550. /* ===================================================================== */
  551. /* Warning: N could be as big as QSIZ! */
  552. /* Test the input parameters. */
  553. /* Parameter adjustments */
  554. --d__;
  555. --e;
  556. q_dim1 = *ldq;
  557. q_offset = 1 + q_dim1 * 1;
  558. q -= q_offset;
  559. qstore_dim1 = *ldqs;
  560. qstore_offset = 1 + qstore_dim1 * 1;
  561. qstore -= qstore_offset;
  562. --rwork;
  563. --iwork;
  564. /* Function Body */
  565. *info = 0;
  566. /* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
  567. /* INFO = -1 */
  568. /* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
  569. /* $ THEN */
  570. if (*qsiz < f2cmax(0,*n)) {
  571. *info = -1;
  572. } else if (*n < 0) {
  573. *info = -2;
  574. } else if (*ldq < f2cmax(1,*n)) {
  575. *info = -6;
  576. } else if (*ldqs < f2cmax(1,*n)) {
  577. *info = -8;
  578. }
  579. if (*info != 0) {
  580. i__1 = -(*info);
  581. xerbla_("CLAED0", &i__1, (ftnlen)6);
  582. return 0;
  583. }
  584. /* Quick return if possible */
  585. if (*n == 0) {
  586. return 0;
  587. }
  588. smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
  589. ftnlen)6, (ftnlen)1);
  590. /* Determine the size and placement of the submatrices, and save in */
  591. /* the leading elements of IWORK. */
  592. iwork[1] = *n;
  593. subpbs = 1;
  594. tlvls = 0;
  595. L10:
  596. if (iwork[subpbs] > smlsiz) {
  597. for (j = subpbs; j >= 1; --j) {
  598. iwork[j * 2] = (iwork[j] + 1) / 2;
  599. iwork[(j << 1) - 1] = iwork[j] / 2;
  600. /* L20: */
  601. }
  602. ++tlvls;
  603. subpbs <<= 1;
  604. goto L10;
  605. }
  606. i__1 = subpbs;
  607. for (j = 2; j <= i__1; ++j) {
  608. iwork[j] += iwork[j - 1];
  609. /* L30: */
  610. }
  611. /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
  612. /* using rank-1 modifications (cuts). */
  613. spm1 = subpbs - 1;
  614. i__1 = spm1;
  615. for (i__ = 1; i__ <= i__1; ++i__) {
  616. submat = iwork[i__] + 1;
  617. smm1 = submat - 1;
  618. d__[smm1] -= (r__1 = e[smm1], abs(r__1));
  619. d__[submat] -= (r__1 = e[smm1], abs(r__1));
  620. /* L40: */
  621. }
  622. indxq = (*n << 2) + 3;
  623. /* Set up workspaces for eigenvalues only/accumulate new vectors */
  624. /* routine */
  625. temp = log((real) (*n)) / log(2.f);
  626. lgn = (integer) temp;
  627. if (pow_ii(&c__2, &lgn) < *n) {
  628. ++lgn;
  629. }
  630. if (pow_ii(&c__2, &lgn) < *n) {
  631. ++lgn;
  632. }
  633. iprmpt = indxq + *n + 1;
  634. iperm = iprmpt + *n * lgn;
  635. iqptr = iperm + *n * lgn;
  636. igivpt = iqptr + *n + 2;
  637. igivcl = igivpt + *n * lgn;
  638. igivnm = 1;
  639. iq = igivnm + (*n << 1) * lgn;
  640. /* Computing 2nd power */
  641. i__1 = *n;
  642. iwrem = iq + i__1 * i__1 + 1;
  643. /* Initialize pointers */
  644. i__1 = subpbs;
  645. for (i__ = 0; i__ <= i__1; ++i__) {
  646. iwork[iprmpt + i__] = 1;
  647. iwork[igivpt + i__] = 1;
  648. /* L50: */
  649. }
  650. iwork[iqptr] = 1;
  651. /* Solve each submatrix eigenproblem at the bottom of the divide and */
  652. /* conquer tree. */
  653. curr = 0;
  654. i__1 = spm1;
  655. for (i__ = 0; i__ <= i__1; ++i__) {
  656. if (i__ == 0) {
  657. submat = 1;
  658. matsiz = iwork[1];
  659. } else {
  660. submat = iwork[i__] + 1;
  661. matsiz = iwork[i__ + 1] - iwork[i__];
  662. }
  663. ll = iq - 1 + iwork[iqptr + curr];
  664. ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
  665. rwork[1], info);
  666. clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
  667. matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
  668. );
  669. /* Computing 2nd power */
  670. i__2 = matsiz;
  671. iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
  672. ++curr;
  673. if (*info > 0) {
  674. *info = submat * (*n + 1) + submat + matsiz - 1;
  675. return 0;
  676. }
  677. k = 1;
  678. i__2 = iwork[i__ + 1];
  679. for (j = submat; j <= i__2; ++j) {
  680. iwork[indxq + j] = k;
  681. ++k;
  682. /* L60: */
  683. }
  684. /* L70: */
  685. }
  686. /* Successively merge eigensystems of adjacent submatrices */
  687. /* into eigensystem for the corresponding larger matrix. */
  688. /* while ( SUBPBS > 1 ) */
  689. curlvl = 1;
  690. L80:
  691. if (subpbs > 1) {
  692. spm2 = subpbs - 2;
  693. i__1 = spm2;
  694. for (i__ = 0; i__ <= i__1; i__ += 2) {
  695. if (i__ == 0) {
  696. submat = 1;
  697. matsiz = iwork[2];
  698. msd2 = iwork[1];
  699. curprb = 0;
  700. } else {
  701. submat = iwork[i__] + 1;
  702. matsiz = iwork[i__ + 2] - iwork[i__];
  703. msd2 = matsiz / 2;
  704. ++curprb;
  705. }
  706. /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
  707. /* into an eigensystem of size MATSIZ. CLAED7 handles the case */
  708. /* when the eigenvectors of a full or band Hermitian matrix (which */
  709. /* was reduced to tridiagonal form) are desired. */
  710. /* I am free to use Q as a valuable working space until Loop 150. */
  711. claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
  712. submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
  713. submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
  714. iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
  715. igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat *
  716. q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
  717. if (*info > 0) {
  718. *info = submat * (*n + 1) + submat + matsiz - 1;
  719. return 0;
  720. }
  721. iwork[i__ / 2 + 1] = iwork[i__ + 2];
  722. /* L90: */
  723. }
  724. subpbs /= 2;
  725. ++curlvl;
  726. goto L80;
  727. }
  728. /* end while */
  729. /* Re-merge the eigenvalues/vectors which were deflated at the final */
  730. /* merge step. */
  731. i__1 = *n;
  732. for (i__ = 1; i__ <= i__1; ++i__) {
  733. j = iwork[indxq + i__];
  734. rwork[i__] = d__[j];
  735. ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
  736. , &c__1);
  737. /* L100: */
  738. }
  739. scopy_(n, &rwork[1], &c__1, &d__[1], &c__1);
  740. return 0;
  741. /* End of CLAED0 */
  742. } /* claed0_ */