You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_gerfsx_extended.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static complex c_b6 = {-1.f,0.f};
  382. static complex c_b8 = {1.f,0.f};
  383. static real c_b31 = 1.f;
  384. /* > \brief \b CLA_GERFSX_EXTENDED */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download CLA_GERFSX_EXTENDED + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_ger
  391. fsx_extended.f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_ger
  394. fsx_extended.f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_ger
  397. fsx_extended.f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE CLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A, */
  403. /* LDA, AF, LDAF, IPIV, COLEQU, C, B, */
  404. /* LDB, Y, LDY, BERR_OUT, N_NORMS, */
  405. /* ERRS_N, ERRS_C, RES, AYB, DY, */
  406. /* Y_TAIL, RCOND, ITHRESH, RTHRESH, */
  407. /* DZ_UB, IGNORE_CWISE, INFO ) */
  408. /* INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE, */
  409. /* $ TRANS_TYPE, N_NORMS */
  410. /* LOGICAL COLEQU, IGNORE_CWISE */
  411. /* INTEGER ITHRESH */
  412. /* REAL RTHRESH, DZ_UB */
  413. /* INTEGER IPIV( * ) */
  414. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  415. /* $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * ) */
  416. /* REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ), */
  417. /* $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * ) */
  418. /* > \par Purpose: */
  419. /* ============= */
  420. /* > */
  421. /* > \verbatim */
  422. /* > */
  423. /* > */
  424. /* > CLA_GERFSX_EXTENDED improves the computed solution to a system of */
  425. /* > linear equations by performing extra-precise iterative refinement */
  426. /* > and provides error bounds and backward error estimates for the solution. */
  427. /* > This subroutine is called by CGERFSX to perform iterative refinement. */
  428. /* > In addition to normwise error bound, the code provides maximum */
  429. /* > componentwise error bound if possible. See comments for ERRS_N */
  430. /* > and ERRS_C for details of the error bounds. Note that this */
  431. /* > subroutine is only resonsible for setting the second fields of */
  432. /* > ERRS_N and ERRS_C. */
  433. /* > \endverbatim */
  434. /* Arguments: */
  435. /* ========== */
  436. /* > \param[in] PREC_TYPE */
  437. /* > \verbatim */
  438. /* > PREC_TYPE is INTEGER */
  439. /* > Specifies the intermediate precision to be used in refinement. */
  440. /* > The value is defined by ILAPREC(P) where P is a CHARACTER and P */
  441. /* > = 'S': Single */
  442. /* > = 'D': Double */
  443. /* > = 'I': Indigenous */
  444. /* > = 'X' or 'E': Extra */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in] TRANS_TYPE */
  448. /* > \verbatim */
  449. /* > TRANS_TYPE is INTEGER */
  450. /* > Specifies the transposition operation on A. */
  451. /* > The value is defined by ILATRANS(T) where T is a CHARACTER and T */
  452. /* > = 'N': No transpose */
  453. /* > = 'T': Transpose */
  454. /* > = 'C': Conjugate transpose */
  455. /* > \endverbatim */
  456. /* > */
  457. /* > \param[in] N */
  458. /* > \verbatim */
  459. /* > N is INTEGER */
  460. /* > The number of linear equations, i.e., the order of the */
  461. /* > matrix A. N >= 0. */
  462. /* > \endverbatim */
  463. /* > */
  464. /* > \param[in] NRHS */
  465. /* > \verbatim */
  466. /* > NRHS is INTEGER */
  467. /* > The number of right-hand-sides, i.e., the number of columns of the */
  468. /* > matrix B. */
  469. /* > \endverbatim */
  470. /* > */
  471. /* > \param[in] A */
  472. /* > \verbatim */
  473. /* > A is COMPLEX array, dimension (LDA,N) */
  474. /* > On entry, the N-by-N matrix A. */
  475. /* > \endverbatim */
  476. /* > */
  477. /* > \param[in] LDA */
  478. /* > \verbatim */
  479. /* > LDA is INTEGER */
  480. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[in] AF */
  484. /* > \verbatim */
  485. /* > AF is COMPLEX array, dimension (LDAF,N) */
  486. /* > The factors L and U from the factorization */
  487. /* > A = P*L*U as computed by CGETRF. */
  488. /* > \endverbatim */
  489. /* > */
  490. /* > \param[in] LDAF */
  491. /* > \verbatim */
  492. /* > LDAF is INTEGER */
  493. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  494. /* > \endverbatim */
  495. /* > */
  496. /* > \param[in] IPIV */
  497. /* > \verbatim */
  498. /* > IPIV is INTEGER array, dimension (N) */
  499. /* > The pivot indices from the factorization A = P*L*U */
  500. /* > as computed by CGETRF; row i of the matrix was interchanged */
  501. /* > with row IPIV(i). */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[in] COLEQU */
  505. /* > \verbatim */
  506. /* > COLEQU is LOGICAL */
  507. /* > If .TRUE. then column equilibration was done to A before calling */
  508. /* > this routine. This is needed to compute the solution and error */
  509. /* > bounds correctly. */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[in] C */
  513. /* > \verbatim */
  514. /* > C is REAL array, dimension (N) */
  515. /* > The column scale factors for A. If COLEQU = .FALSE., C */
  516. /* > is not accessed. If C is input, each element of C should be a power */
  517. /* > of the radix to ensure a reliable solution and error estimates. */
  518. /* > Scaling by powers of the radix does not cause rounding errors unless */
  519. /* > the result underflows or overflows. Rounding errors during scaling */
  520. /* > lead to refining with a matrix that is not equivalent to the */
  521. /* > input matrix, producing error estimates that may not be */
  522. /* > reliable. */
  523. /* > \endverbatim */
  524. /* > */
  525. /* > \param[in] B */
  526. /* > \verbatim */
  527. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  528. /* > The right-hand-side matrix B. */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] LDB */
  532. /* > \verbatim */
  533. /* > LDB is INTEGER */
  534. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in,out] Y */
  538. /* > \verbatim */
  539. /* > Y is COMPLEX array, dimension (LDY,NRHS) */
  540. /* > On entry, the solution matrix X, as computed by CGETRS. */
  541. /* > On exit, the improved solution matrix Y. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] LDY */
  545. /* > \verbatim */
  546. /* > LDY is INTEGER */
  547. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[out] BERR_OUT */
  551. /* > \verbatim */
  552. /* > BERR_OUT is REAL array, dimension (NRHS) */
  553. /* > On exit, BERR_OUT(j) contains the componentwise relative backward */
  554. /* > error for right-hand-side j from the formula */
  555. /* > f2cmax(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  556. /* > where abs(Z) is the componentwise absolute value of the matrix */
  557. /* > or vector Z. This is computed by CLA_LIN_BERR. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N_NORMS */
  561. /* > \verbatim */
  562. /* > N_NORMS is INTEGER */
  563. /* > Determines which error bounds to return (see ERRS_N */
  564. /* > and ERRS_C). */
  565. /* > If N_NORMS >= 1 return normwise error bounds. */
  566. /* > If N_NORMS >= 2 return componentwise error bounds. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in,out] ERRS_N */
  570. /* > \verbatim */
  571. /* > ERRS_N is REAL array, dimension (NRHS, N_ERR_BNDS) */
  572. /* > For each right-hand side, this array contains information about */
  573. /* > various error bounds and condition numbers corresponding to the */
  574. /* > normwise relative error, which is defined as follows: */
  575. /* > */
  576. /* > Normwise relative error in the ith solution vector: */
  577. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  578. /* > ------------------------------ */
  579. /* > max_j abs(X(j,i)) */
  580. /* > */
  581. /* > The array is indexed by the type of error information as described */
  582. /* > below. There currently are up to three pieces of information */
  583. /* > returned. */
  584. /* > */
  585. /* > The first index in ERRS_N(i,:) corresponds to the ith */
  586. /* > right-hand side. */
  587. /* > */
  588. /* > The second index in ERRS_N(:,err) contains the following */
  589. /* > three fields: */
  590. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  591. /* > reciprocal condition number is less than the threshold */
  592. /* > sqrt(n) * slamch('Epsilon'). */
  593. /* > */
  594. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  595. /* > almost certainly within a factor of 10 of the true error */
  596. /* > so long as the next entry is greater than the threshold */
  597. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  598. /* > be trusted if the previous boolean is true. */
  599. /* > */
  600. /* > err = 3 Reciprocal condition number: Estimated normwise */
  601. /* > reciprocal condition number. Compared with the threshold */
  602. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  603. /* > estimate is "guaranteed". These reciprocal condition */
  604. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  605. /* > appropriately scaled matrix Z. */
  606. /* > Let Z = S*A, where S scales each row by a power of the */
  607. /* > radix so all absolute row sums of Z are approximately 1. */
  608. /* > */
  609. /* > This subroutine is only responsible for setting the second field */
  610. /* > above. */
  611. /* > See Lapack Working Note 165 for further details and extra */
  612. /* > cautions. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] ERRS_C */
  616. /* > \verbatim */
  617. /* > ERRS_C is REAL array, dimension (NRHS, N_ERR_BNDS) */
  618. /* > For each right-hand side, this array contains information about */
  619. /* > various error bounds and condition numbers corresponding to the */
  620. /* > componentwise relative error, which is defined as follows: */
  621. /* > */
  622. /* > Componentwise relative error in the ith solution vector: */
  623. /* > abs(XTRUE(j,i) - X(j,i)) */
  624. /* > max_j ---------------------- */
  625. /* > abs(X(j,i)) */
  626. /* > */
  627. /* > The array is indexed by the right-hand side i (on which the */
  628. /* > componentwise relative error depends), and the type of error */
  629. /* > information as described below. There currently are up to three */
  630. /* > pieces of information returned for each right-hand side. If */
  631. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  632. /* > ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most */
  633. /* > the first (:,N_ERR_BNDS) entries are returned. */
  634. /* > */
  635. /* > The first index in ERRS_C(i,:) corresponds to the ith */
  636. /* > right-hand side. */
  637. /* > */
  638. /* > The second index in ERRS_C(:,err) contains the following */
  639. /* > three fields: */
  640. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  641. /* > reciprocal condition number is less than the threshold */
  642. /* > sqrt(n) * slamch('Epsilon'). */
  643. /* > */
  644. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  645. /* > almost certainly within a factor of 10 of the true error */
  646. /* > so long as the next entry is greater than the threshold */
  647. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  648. /* > be trusted if the previous boolean is true. */
  649. /* > */
  650. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  651. /* > reciprocal condition number. Compared with the threshold */
  652. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  653. /* > estimate is "guaranteed". These reciprocal condition */
  654. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  655. /* > appropriately scaled matrix Z. */
  656. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  657. /* > current right-hand side and S scales each row of */
  658. /* > A*diag(x) by a power of the radix so all absolute row */
  659. /* > sums of Z are approximately 1. */
  660. /* > */
  661. /* > This subroutine is only responsible for setting the second field */
  662. /* > above. */
  663. /* > See Lapack Working Note 165 for further details and extra */
  664. /* > cautions. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] RES */
  668. /* > \verbatim */
  669. /* > RES is COMPLEX array, dimension (N) */
  670. /* > Workspace to hold the intermediate residual. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] AYB */
  674. /* > \verbatim */
  675. /* > AYB is REAL array, dimension (N) */
  676. /* > Workspace. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] DY */
  680. /* > \verbatim */
  681. /* > DY is COMPLEX array, dimension (N) */
  682. /* > Workspace to hold the intermediate solution. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[in] Y_TAIL */
  686. /* > \verbatim */
  687. /* > Y_TAIL is COMPLEX array, dimension (N) */
  688. /* > Workspace to hold the trailing bits of the intermediate solution. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] RCOND */
  692. /* > \verbatim */
  693. /* > RCOND is REAL */
  694. /* > Reciprocal scaled condition number. This is an estimate of the */
  695. /* > reciprocal Skeel condition number of the matrix A after */
  696. /* > equilibration (if done). If this is less than the machine */
  697. /* > precision (in particular, if it is zero), the matrix is singular */
  698. /* > to working precision. Note that the error may still be small even */
  699. /* > if this number is very small and the matrix appears ill- */
  700. /* > conditioned. */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[in] ITHRESH */
  704. /* > \verbatim */
  705. /* > ITHRESH is INTEGER */
  706. /* > The maximum number of residual computations allowed for */
  707. /* > refinement. The default is 10. For 'aggressive' set to 100 to */
  708. /* > permit convergence using approximate factorizations or */
  709. /* > factorizations other than LU. If the factorization uses a */
  710. /* > technique other than Gaussian elimination, the guarantees in */
  711. /* > ERRS_N and ERRS_C may no longer be trustworthy. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[in] RTHRESH */
  715. /* > \verbatim */
  716. /* > RTHRESH is REAL */
  717. /* > Determines when to stop refinement if the error estimate stops */
  718. /* > decreasing. Refinement will stop when the next solution no longer */
  719. /* > satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
  720. /* > the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
  721. /* > default value is 0.5. For 'aggressive' set to 0.9 to permit */
  722. /* > convergence on extremely ill-conditioned matrices. See LAWN 165 */
  723. /* > for more details. */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[in] DZ_UB */
  727. /* > \verbatim */
  728. /* > DZ_UB is REAL */
  729. /* > Determines when to start considering componentwise convergence. */
  730. /* > Componentwise convergence is only considered after each component */
  731. /* > of the solution Y is stable, which we definte as the relative */
  732. /* > change in each component being less than DZ_UB. The default value */
  733. /* > is 0.25, requiring the first bit to be stable. See LAWN 165 for */
  734. /* > more details. */
  735. /* > \endverbatim */
  736. /* > */
  737. /* > \param[in] IGNORE_CWISE */
  738. /* > \verbatim */
  739. /* > IGNORE_CWISE is LOGICAL */
  740. /* > If .TRUE. then ignore componentwise convergence. Default value */
  741. /* > is .FALSE.. */
  742. /* > \endverbatim */
  743. /* > */
  744. /* > \param[out] INFO */
  745. /* > \verbatim */
  746. /* > INFO is INTEGER */
  747. /* > = 0: Successful exit. */
  748. /* > < 0: if INFO = -i, the ith argument to CGETRS had an illegal */
  749. /* > value */
  750. /* > \endverbatim */
  751. /* Authors: */
  752. /* ======== */
  753. /* > \author Univ. of Tennessee */
  754. /* > \author Univ. of California Berkeley */
  755. /* > \author Univ. of Colorado Denver */
  756. /* > \author NAG Ltd. */
  757. /* > \date December 2016 */
  758. /* > \ingroup complexGEcomputational */
  759. /* ===================================================================== */
  760. /* Subroutine */ int cla_gerfsx_extended_(integer *prec_type__, integer *
  761. trans_type__, integer *n, integer *nrhs, complex *a, integer *lda,
  762. complex *af, integer *ldaf, integer *ipiv, logical *colequ, real *c__,
  763. complex *b, integer *ldb, complex *y, integer *ldy, real *berr_out__,
  764. integer *n_norms__, real *errs_n__, real *errs_c__, complex *res,
  765. real *ayb, complex *dy, complex *y_tail__, real *rcond, integer *
  766. ithresh, real *rthresh, real *dz_ub__, logical *ignore_cwise__,
  767. integer *info)
  768. {
  769. /* System generated locals */
  770. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
  771. y_offset, errs_n_dim1, errs_n_offset, errs_c_dim1, errs_c_offset,
  772. i__1, i__2, i__3, i__4;
  773. real r__1, r__2;
  774. char ch__1[1];
  775. /* Local variables */
  776. real dx_x__, dz_z__;
  777. extern /* Subroutine */ int cla_lin_berr_(integer *, integer *, integer *
  778. , complex *, real *, real *);
  779. real ymin;
  780. extern /* Subroutine */ int blas_cgemv_x_(integer *, integer *, integer *
  781. , complex *, complex *, integer *, complex *, integer *, complex *
  782. , complex *, integer *, integer *);
  783. real dxratmax, dzratmax;
  784. integer y_prec_state__, i__, j;
  785. extern /* Subroutine */ int blas_cgemv2_x_(integer *, integer *, integer
  786. *, complex *, complex *, integer *, complex *, complex *, integer
  787. *, complex *, complex *, integer *, integer *), cla_geamv_(
  788. integer *, integer *, integer *, real *, complex *, integer *,
  789. complex *, integer *, real *, real *, integer *), cgemv_(char *,
  790. integer *, integer *, complex *, complex *, integer *, complex *,
  791. integer *, complex *, complex *, integer *), ccopy_(
  792. integer *, complex *, integer *, complex *, integer *);
  793. real dxrat;
  794. logical incr_prec__;
  795. real dzrat;
  796. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  797. integer *, complex *, integer *);
  798. char trans[1];
  799. real normx, normy, myhugeval, prev_dz_z__, yk;
  800. extern real slamch_(char *);
  801. extern /* Subroutine */ int cgetrs_(char *, integer *, integer *, complex
  802. *, integer *, integer *, complex *, integer *, integer *);
  803. real final_dx_x__;
  804. extern /* Subroutine */ int cla_wwaddw_(integer *, complex *, complex *,
  805. complex *);
  806. real final_dz_z__, normdx;
  807. extern /* Character */ VOID chla_transtype_(char *, integer *);
  808. real prevnormdx;
  809. integer cnt;
  810. real dyk, eps;
  811. integer x_state__, z_state__;
  812. real incr_thresh__;
  813. /* -- LAPACK computational routine (version 3.7.0) -- */
  814. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  815. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  816. /* December 2016 */
  817. /* ===================================================================== */
  818. /* Parameter adjustments */
  819. errs_c_dim1 = *nrhs;
  820. errs_c_offset = 1 + errs_c_dim1 * 1;
  821. errs_c__ -= errs_c_offset;
  822. errs_n_dim1 = *nrhs;
  823. errs_n_offset = 1 + errs_n_dim1 * 1;
  824. errs_n__ -= errs_n_offset;
  825. a_dim1 = *lda;
  826. a_offset = 1 + a_dim1 * 1;
  827. a -= a_offset;
  828. af_dim1 = *ldaf;
  829. af_offset = 1 + af_dim1 * 1;
  830. af -= af_offset;
  831. --ipiv;
  832. --c__;
  833. b_dim1 = *ldb;
  834. b_offset = 1 + b_dim1 * 1;
  835. b -= b_offset;
  836. y_dim1 = *ldy;
  837. y_offset = 1 + y_dim1 * 1;
  838. y -= y_offset;
  839. --berr_out__;
  840. --res;
  841. --ayb;
  842. --dy;
  843. --y_tail__;
  844. /* Function Body */
  845. if (*info != 0) {
  846. return 0;
  847. }
  848. chla_transtype_(ch__1, trans_type__);
  849. *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
  850. eps = slamch_("Epsilon");
  851. myhugeval = slamch_("Overflow");
  852. /* Force MYHUGEVAL to Inf */
  853. myhugeval *= myhugeval;
  854. /* Using MYHUGEVAL may lead to spurious underflows. */
  855. incr_thresh__ = (real) (*n) * eps;
  856. i__1 = *nrhs;
  857. for (j = 1; j <= i__1; ++j) {
  858. y_prec_state__ = 1;
  859. if (y_prec_state__ == 2) {
  860. i__2 = *n;
  861. for (i__ = 1; i__ <= i__2; ++i__) {
  862. i__3 = i__;
  863. y_tail__[i__3].r = 0.f, y_tail__[i__3].i = 0.f;
  864. }
  865. }
  866. dxrat = 0.f;
  867. dxratmax = 0.f;
  868. dzrat = 0.f;
  869. dzratmax = 0.f;
  870. final_dx_x__ = myhugeval;
  871. final_dz_z__ = myhugeval;
  872. prevnormdx = myhugeval;
  873. prev_dz_z__ = myhugeval;
  874. dz_z__ = myhugeval;
  875. dx_x__ = myhugeval;
  876. x_state__ = 1;
  877. z_state__ = 0;
  878. incr_prec__ = FALSE_;
  879. i__2 = *ithresh;
  880. for (cnt = 1; cnt <= i__2; ++cnt) {
  881. /* Compute residual RES = B_s - op(A_s) * Y, */
  882. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  883. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  884. if (y_prec_state__ == 0) {
  885. cgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 +
  886. 1], &c__1, &c_b8, &res[1], &c__1);
  887. } else if (y_prec_state__ == 1) {
  888. blas_cgemv_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, &
  889. y[j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1,
  890. prec_type__);
  891. } else {
  892. blas_cgemv2_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda,
  893. &y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b8, &res[
  894. 1], &c__1, prec_type__);
  895. }
  896. /* XXX: RES is no longer needed. */
  897. ccopy_(n, &res[1], &c__1, &dy[1], &c__1);
  898. cgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1],
  899. n, info);
  900. /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
  901. normx = 0.f;
  902. normy = 0.f;
  903. normdx = 0.f;
  904. dz_z__ = 0.f;
  905. ymin = myhugeval;
  906. i__3 = *n;
  907. for (i__ = 1; i__ <= i__3; ++i__) {
  908. i__4 = i__ + j * y_dim1;
  909. yk = (r__1 = y[i__4].r, abs(r__1)) + (r__2 = r_imag(&y[i__ +
  910. j * y_dim1]), abs(r__2));
  911. i__4 = i__;
  912. dyk = (r__1 = dy[i__4].r, abs(r__1)) + (r__2 = r_imag(&dy[i__]
  913. ), abs(r__2));
  914. if (yk != 0.f) {
  915. /* Computing MAX */
  916. r__1 = dz_z__, r__2 = dyk / yk;
  917. dz_z__ = f2cmax(r__1,r__2);
  918. } else if (dyk != 0.f) {
  919. dz_z__ = myhugeval;
  920. }
  921. ymin = f2cmin(ymin,yk);
  922. normy = f2cmax(normy,yk);
  923. if (*colequ) {
  924. /* Computing MAX */
  925. r__1 = normx, r__2 = yk * c__[i__];
  926. normx = f2cmax(r__1,r__2);
  927. /* Computing MAX */
  928. r__1 = normdx, r__2 = dyk * c__[i__];
  929. normdx = f2cmax(r__1,r__2);
  930. } else {
  931. normx = normy;
  932. normdx = f2cmax(normdx,dyk);
  933. }
  934. }
  935. if (normx != 0.f) {
  936. dx_x__ = normdx / normx;
  937. } else if (normdx == 0.f) {
  938. dx_x__ = 0.f;
  939. } else {
  940. dx_x__ = myhugeval;
  941. }
  942. dxrat = normdx / prevnormdx;
  943. dzrat = dz_z__ / prev_dz_z__;
  944. /* Check termination criteria */
  945. if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy
  946. && y_prec_state__ < 2) {
  947. incr_prec__ = TRUE_;
  948. }
  949. if (x_state__ == 3 && dxrat <= *rthresh) {
  950. x_state__ = 1;
  951. }
  952. if (x_state__ == 1) {
  953. if (dx_x__ <= eps) {
  954. x_state__ = 2;
  955. } else if (dxrat > *rthresh) {
  956. if (y_prec_state__ != 2) {
  957. incr_prec__ = TRUE_;
  958. } else {
  959. x_state__ = 3;
  960. }
  961. } else {
  962. if (dxrat > dxratmax) {
  963. dxratmax = dxrat;
  964. }
  965. }
  966. if (x_state__ > 1) {
  967. final_dx_x__ = dx_x__;
  968. }
  969. }
  970. if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
  971. z_state__ = 1;
  972. }
  973. if (z_state__ == 3 && dzrat <= *rthresh) {
  974. z_state__ = 1;
  975. }
  976. if (z_state__ == 1) {
  977. if (dz_z__ <= eps) {
  978. z_state__ = 2;
  979. } else if (dz_z__ > *dz_ub__) {
  980. z_state__ = 0;
  981. dzratmax = 0.f;
  982. final_dz_z__ = myhugeval;
  983. } else if (dzrat > *rthresh) {
  984. if (y_prec_state__ != 2) {
  985. incr_prec__ = TRUE_;
  986. } else {
  987. z_state__ = 3;
  988. }
  989. } else {
  990. if (dzrat > dzratmax) {
  991. dzratmax = dzrat;
  992. }
  993. }
  994. if (z_state__ > 1) {
  995. final_dz_z__ = dz_z__;
  996. }
  997. }
  998. /* Exit if both normwise and componentwise stopped working, */
  999. /* but if componentwise is unstable, let it go at least two */
  1000. /* iterations. */
  1001. if (x_state__ != 1) {
  1002. if (*ignore_cwise__) {
  1003. goto L666;
  1004. }
  1005. if (z_state__ == 3 || z_state__ == 2) {
  1006. goto L666;
  1007. }
  1008. if (z_state__ == 0 && cnt > 1) {
  1009. goto L666;
  1010. }
  1011. }
  1012. if (incr_prec__) {
  1013. incr_prec__ = FALSE_;
  1014. ++y_prec_state__;
  1015. i__3 = *n;
  1016. for (i__ = 1; i__ <= i__3; ++i__) {
  1017. i__4 = i__;
  1018. y_tail__[i__4].r = 0.f, y_tail__[i__4].i = 0.f;
  1019. }
  1020. }
  1021. prevnormdx = normdx;
  1022. prev_dz_z__ = dz_z__;
  1023. /* Update soluton. */
  1024. if (y_prec_state__ < 2) {
  1025. caxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
  1026. } else {
  1027. cla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
  1028. }
  1029. }
  1030. /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't CALL MYEXIT. */
  1031. L666:
  1032. /* Set final_* when cnt hits ithresh */
  1033. if (x_state__ == 1) {
  1034. final_dx_x__ = dx_x__;
  1035. }
  1036. if (z_state__ == 1) {
  1037. final_dz_z__ = dz_z__;
  1038. }
  1039. /* Compute error bounds */
  1040. if (*n_norms__ >= 1) {
  1041. errs_n__[j + (errs_n_dim1 << 1)] = final_dx_x__ / (1 - dxratmax);
  1042. }
  1043. if (*n_norms__ >= 2) {
  1044. errs_c__[j + (errs_c_dim1 << 1)] = final_dz_z__ / (1 - dzratmax);
  1045. }
  1046. /* Compute componentwise relative backward error from formula */
  1047. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  1048. /* where abs(Z) is the componentwise absolute value of the matrix */
  1049. /* or vector Z. */
  1050. /* Compute residual RES = B_s - op(A_s) * Y, */
  1051. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  1052. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  1053. cgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 1], &
  1054. c__1, &c_b8, &res[1], &c__1);
  1055. i__2 = *n;
  1056. for (i__ = 1; i__ <= i__2; ++i__) {
  1057. i__3 = i__ + j * b_dim1;
  1058. ayb[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__
  1059. + j * b_dim1]), abs(r__2));
  1060. }
  1061. /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
  1062. cla_geamv_(trans_type__, n, n, &c_b31, &a[a_offset], lda, &y[j *
  1063. y_dim1 + 1], &c__1, &c_b31, &ayb[1], &c__1);
  1064. cla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
  1065. /* End of loop for each RHS. */
  1066. }
  1067. return 0;
  1068. } /* cla_gerfsx_extended__ */