You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chsein.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static logical c_false = FALSE_;
  381. static logical c_true = TRUE_;
  382. /* > \brief \b CHSEIN */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download CHSEIN + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chsein.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chsein.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chsein.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE CHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, */
  401. /* LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, */
  402. /* IFAILR, INFO ) */
  403. /* CHARACTER EIGSRC, INITV, SIDE */
  404. /* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
  405. /* LOGICAL SELECT( * ) */
  406. /* INTEGER IFAILL( * ), IFAILR( * ) */
  407. /* REAL RWORK( * ) */
  408. /* COMPLEX H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
  409. /* $ W( * ), WORK( * ) */
  410. /* > \par Purpose: */
  411. /* ============= */
  412. /* > */
  413. /* > \verbatim */
  414. /* > */
  415. /* > CHSEIN uses inverse iteration to find specified right and/or left */
  416. /* > eigenvectors of a complex upper Hessenberg matrix H. */
  417. /* > */
  418. /* > The right eigenvector x and the left eigenvector y of the matrix H */
  419. /* > corresponding to an eigenvalue w are defined by: */
  420. /* > */
  421. /* > H * x = w * x, y**h * H = w * y**h */
  422. /* > */
  423. /* > where y**h denotes the conjugate transpose of the vector y. */
  424. /* > \endverbatim */
  425. /* Arguments: */
  426. /* ========== */
  427. /* > \param[in] SIDE */
  428. /* > \verbatim */
  429. /* > SIDE is CHARACTER*1 */
  430. /* > = 'R': compute right eigenvectors only; */
  431. /* > = 'L': compute left eigenvectors only; */
  432. /* > = 'B': compute both right and left eigenvectors. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] EIGSRC */
  436. /* > \verbatim */
  437. /* > EIGSRC is CHARACTER*1 */
  438. /* > Specifies the source of eigenvalues supplied in W: */
  439. /* > = 'Q': the eigenvalues were found using CHSEQR; thus, if */
  440. /* > H has zero subdiagonal elements, and so is */
  441. /* > block-triangular, then the j-th eigenvalue can be */
  442. /* > assumed to be an eigenvalue of the block containing */
  443. /* > the j-th row/column. This property allows CHSEIN to */
  444. /* > perform inverse iteration on just one diagonal block. */
  445. /* > = 'N': no assumptions are made on the correspondence */
  446. /* > between eigenvalues and diagonal blocks. In this */
  447. /* > case, CHSEIN must always perform inverse iteration */
  448. /* > using the whole matrix H. */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[in] INITV */
  452. /* > \verbatim */
  453. /* > INITV is CHARACTER*1 */
  454. /* > = 'N': no initial vectors are supplied; */
  455. /* > = 'U': user-supplied initial vectors are stored in the arrays */
  456. /* > VL and/or VR. */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[in] SELECT */
  460. /* > \verbatim */
  461. /* > SELECT is LOGICAL array, dimension (N) */
  462. /* > Specifies the eigenvectors to be computed. To select the */
  463. /* > eigenvector corresponding to the eigenvalue W(j), */
  464. /* > SELECT(j) must be set to .TRUE.. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in] N */
  468. /* > \verbatim */
  469. /* > N is INTEGER */
  470. /* > The order of the matrix H. N >= 0. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] H */
  474. /* > \verbatim */
  475. /* > H is COMPLEX array, dimension (LDH,N) */
  476. /* > The upper Hessenberg matrix H. */
  477. /* > If a NaN is detected in H, the routine will return with INFO=-6. */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[in] LDH */
  481. /* > \verbatim */
  482. /* > LDH is INTEGER */
  483. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  484. /* > \endverbatim */
  485. /* > */
  486. /* > \param[in,out] W */
  487. /* > \verbatim */
  488. /* > W is COMPLEX array, dimension (N) */
  489. /* > On entry, the eigenvalues of H. */
  490. /* > On exit, the real parts of W may have been altered since */
  491. /* > close eigenvalues are perturbed slightly in searching for */
  492. /* > independent eigenvectors. */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[in,out] VL */
  496. /* > \verbatim */
  497. /* > VL is COMPLEX array, dimension (LDVL,MM) */
  498. /* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
  499. /* > contain starting vectors for the inverse iteration for the */
  500. /* > left eigenvectors; the starting vector for each eigenvector */
  501. /* > must be in the same column in which the eigenvector will be */
  502. /* > stored. */
  503. /* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
  504. /* > specified by SELECT will be stored consecutively in the */
  505. /* > columns of VL, in the same order as their eigenvalues. */
  506. /* > If SIDE = 'R', VL is not referenced. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[in] LDVL */
  510. /* > \verbatim */
  511. /* > LDVL is INTEGER */
  512. /* > The leading dimension of the array VL. */
  513. /* > LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
  514. /* > \endverbatim */
  515. /* > */
  516. /* > \param[in,out] VR */
  517. /* > \verbatim */
  518. /* > VR is COMPLEX array, dimension (LDVR,MM) */
  519. /* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
  520. /* > contain starting vectors for the inverse iteration for the */
  521. /* > right eigenvectors; the starting vector for each eigenvector */
  522. /* > must be in the same column in which the eigenvector will be */
  523. /* > stored. */
  524. /* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
  525. /* > specified by SELECT will be stored consecutively in the */
  526. /* > columns of VR, in the same order as their eigenvalues. */
  527. /* > If SIDE = 'L', VR is not referenced. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] LDVR */
  531. /* > \verbatim */
  532. /* > LDVR is INTEGER */
  533. /* > The leading dimension of the array VR. */
  534. /* > LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] MM */
  538. /* > \verbatim */
  539. /* > MM is INTEGER */
  540. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[out] M */
  544. /* > \verbatim */
  545. /* > M is INTEGER */
  546. /* > The number of columns in the arrays VL and/or VR required to */
  547. /* > store the eigenvectors (= the number of .TRUE. elements in */
  548. /* > SELECT). */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[out] WORK */
  552. /* > \verbatim */
  553. /* > WORK is COMPLEX array, dimension (N*N) */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[out] RWORK */
  557. /* > \verbatim */
  558. /* > RWORK is REAL array, dimension (N) */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[out] IFAILL */
  562. /* > \verbatim */
  563. /* > IFAILL is INTEGER array, dimension (MM) */
  564. /* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
  565. /* > eigenvector in the i-th column of VL (corresponding to the */
  566. /* > eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
  567. /* > eigenvector converged satisfactorily. */
  568. /* > If SIDE = 'R', IFAILL is not referenced. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[out] IFAILR */
  572. /* > \verbatim */
  573. /* > IFAILR is INTEGER array, dimension (MM) */
  574. /* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
  575. /* > eigenvector in the i-th column of VR (corresponding to the */
  576. /* > eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
  577. /* > eigenvector converged satisfactorily. */
  578. /* > If SIDE = 'L', IFAILR is not referenced. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] INFO */
  582. /* > \verbatim */
  583. /* > INFO is INTEGER */
  584. /* > = 0: successful exit */
  585. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  586. /* > > 0: if INFO = i, i is the number of eigenvectors which */
  587. /* > failed to converge; see IFAILL and IFAILR for further */
  588. /* > details. */
  589. /* > \endverbatim */
  590. /* Authors: */
  591. /* ======== */
  592. /* > \author Univ. of Tennessee */
  593. /* > \author Univ. of California Berkeley */
  594. /* > \author Univ. of Colorado Denver */
  595. /* > \author NAG Ltd. */
  596. /* > \date December 2016 */
  597. /* > \ingroup complexOTHERcomputational */
  598. /* > \par Further Details: */
  599. /* ===================== */
  600. /* > */
  601. /* > \verbatim */
  602. /* > */
  603. /* > Each eigenvector is normalized so that the element of largest */
  604. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  605. /* > (x,y) is taken to be |x|+|y|. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* ===================================================================== */
  609. /* Subroutine */ int chsein_(char *side, char *eigsrc, char *initv, logical *
  610. select, integer *n, complex *h__, integer *ldh, complex *w, complex *
  611. vl, integer *ldvl, complex *vr, integer *ldvr, integer *mm, integer *
  612. m, complex *work, real *rwork, integer *ifaill, integer *ifailr,
  613. integer *info)
  614. {
  615. /* System generated locals */
  616. integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  617. i__2, i__3;
  618. real r__1, r__2;
  619. complex q__1, q__2;
  620. /* Local variables */
  621. real unfl;
  622. integer i__, k;
  623. extern logical lsame_(char *, char *);
  624. integer iinfo;
  625. logical leftv, bothv;
  626. real hnorm;
  627. integer kl;
  628. extern /* Subroutine */ int claein_(logical *, logical *, integer *,
  629. complex *, integer *, complex *, complex *, complex *, integer *,
  630. real *, real *, real *, integer *);
  631. integer kr, ks;
  632. complex wk;
  633. extern real slamch_(char *), clanhs_(char *, integer *, complex *,
  634. integer *, real *);
  635. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  636. extern logical sisnan_(real *);
  637. logical noinit;
  638. integer ldwork;
  639. logical rightv, fromqr;
  640. real smlnum;
  641. integer kln;
  642. real ulp, eps3;
  643. /* -- LAPACK computational routine (version 3.7.0) -- */
  644. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  645. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  646. /* December 2016 */
  647. /* ===================================================================== */
  648. /* Decode and test the input parameters. */
  649. /* Parameter adjustments */
  650. --select;
  651. h_dim1 = *ldh;
  652. h_offset = 1 + h_dim1 * 1;
  653. h__ -= h_offset;
  654. --w;
  655. vl_dim1 = *ldvl;
  656. vl_offset = 1 + vl_dim1 * 1;
  657. vl -= vl_offset;
  658. vr_dim1 = *ldvr;
  659. vr_offset = 1 + vr_dim1 * 1;
  660. vr -= vr_offset;
  661. --work;
  662. --rwork;
  663. --ifaill;
  664. --ifailr;
  665. /* Function Body */
  666. bothv = lsame_(side, "B");
  667. rightv = lsame_(side, "R") || bothv;
  668. leftv = lsame_(side, "L") || bothv;
  669. fromqr = lsame_(eigsrc, "Q");
  670. noinit = lsame_(initv, "N");
  671. /* Set M to the number of columns required to store the selected */
  672. /* eigenvectors. */
  673. *m = 0;
  674. i__1 = *n;
  675. for (k = 1; k <= i__1; ++k) {
  676. if (select[k]) {
  677. ++(*m);
  678. }
  679. /* L10: */
  680. }
  681. *info = 0;
  682. if (! rightv && ! leftv) {
  683. *info = -1;
  684. } else if (! fromqr && ! lsame_(eigsrc, "N")) {
  685. *info = -2;
  686. } else if (! noinit && ! lsame_(initv, "U")) {
  687. *info = -3;
  688. } else if (*n < 0) {
  689. *info = -5;
  690. } else if (*ldh < f2cmax(1,*n)) {
  691. *info = -7;
  692. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  693. *info = -10;
  694. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  695. *info = -12;
  696. } else if (*mm < *m) {
  697. *info = -13;
  698. }
  699. if (*info != 0) {
  700. i__1 = -(*info);
  701. xerbla_("CHSEIN", &i__1, (ftnlen)6);
  702. return 0;
  703. }
  704. /* Quick return if possible. */
  705. if (*n == 0) {
  706. return 0;
  707. }
  708. /* Set machine-dependent constants. */
  709. unfl = slamch_("Safe minimum");
  710. ulp = slamch_("Precision");
  711. smlnum = unfl * (*n / ulp);
  712. ldwork = *n;
  713. kl = 1;
  714. kln = 0;
  715. if (fromqr) {
  716. kr = 0;
  717. } else {
  718. kr = *n;
  719. }
  720. ks = 1;
  721. i__1 = *n;
  722. for (k = 1; k <= i__1; ++k) {
  723. if (select[k]) {
  724. /* Compute eigenvector(s) corresponding to W(K). */
  725. if (fromqr) {
  726. /* If affiliation of eigenvalues is known, check whether */
  727. /* the matrix splits. */
  728. /* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
  729. /* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
  730. /* KR = N). */
  731. /* Then inverse iteration can be performed with the */
  732. /* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
  733. /* the submatrix H(1:KR,1:KR) for a right eigenvector. */
  734. i__2 = kl + 1;
  735. for (i__ = k; i__ >= i__2; --i__) {
  736. i__3 = i__ + (i__ - 1) * h_dim1;
  737. if (h__[i__3].r == 0.f && h__[i__3].i == 0.f) {
  738. goto L30;
  739. }
  740. /* L20: */
  741. }
  742. L30:
  743. kl = i__;
  744. if (k > kr) {
  745. i__2 = *n - 1;
  746. for (i__ = k; i__ <= i__2; ++i__) {
  747. i__3 = i__ + 1 + i__ * h_dim1;
  748. if (h__[i__3].r == 0.f && h__[i__3].i == 0.f) {
  749. goto L50;
  750. }
  751. /* L40: */
  752. }
  753. L50:
  754. kr = i__;
  755. }
  756. }
  757. if (kl != kln) {
  758. kln = kl;
  759. /* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
  760. /* has not ben computed before. */
  761. i__2 = kr - kl + 1;
  762. hnorm = clanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
  763. rwork[1]);
  764. if (sisnan_(&hnorm)) {
  765. *info = -6;
  766. return 0;
  767. } else if (hnorm > 0.f) {
  768. eps3 = hnorm * ulp;
  769. } else {
  770. eps3 = smlnum;
  771. }
  772. }
  773. /* Perturb eigenvalue if it is close to any previous */
  774. /* selected eigenvalues affiliated to the submatrix */
  775. /* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
  776. i__2 = k;
  777. wk.r = w[i__2].r, wk.i = w[i__2].i;
  778. L60:
  779. i__2 = kl;
  780. for (i__ = k - 1; i__ >= i__2; --i__) {
  781. i__3 = i__;
  782. q__2.r = w[i__3].r - wk.r, q__2.i = w[i__3].i - wk.i;
  783. q__1.r = q__2.r, q__1.i = q__2.i;
  784. if (select[i__] && (r__1 = q__1.r, abs(r__1)) + (r__2 =
  785. r_imag(&q__1), abs(r__2)) < eps3) {
  786. q__1.r = wk.r + eps3, q__1.i = wk.i;
  787. wk.r = q__1.r, wk.i = q__1.i;
  788. goto L60;
  789. }
  790. /* L70: */
  791. }
  792. i__2 = k;
  793. w[i__2].r = wk.r, w[i__2].i = wk.i;
  794. if (leftv) {
  795. /* Compute left eigenvector. */
  796. i__2 = *n - kl + 1;
  797. claein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
  798. &wk, &vl[kl + ks * vl_dim1], &work[1], &ldwork, &
  799. rwork[1], &eps3, &smlnum, &iinfo);
  800. if (iinfo > 0) {
  801. ++(*info);
  802. ifaill[ks] = k;
  803. } else {
  804. ifaill[ks] = 0;
  805. }
  806. i__2 = kl - 1;
  807. for (i__ = 1; i__ <= i__2; ++i__) {
  808. i__3 = i__ + ks * vl_dim1;
  809. vl[i__3].r = 0.f, vl[i__3].i = 0.f;
  810. /* L80: */
  811. }
  812. }
  813. if (rightv) {
  814. /* Compute right eigenvector. */
  815. claein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wk, &vr[
  816. ks * vr_dim1 + 1], &work[1], &ldwork, &rwork[1], &
  817. eps3, &smlnum, &iinfo);
  818. if (iinfo > 0) {
  819. ++(*info);
  820. ifailr[ks] = k;
  821. } else {
  822. ifailr[ks] = 0;
  823. }
  824. i__2 = *n;
  825. for (i__ = kr + 1; i__ <= i__2; ++i__) {
  826. i__3 = i__ + ks * vr_dim1;
  827. vr[i__3].r = 0.f, vr[i__3].i = 0.f;
  828. /* L90: */
  829. }
  830. }
  831. ++ks;
  832. }
  833. /* L100: */
  834. }
  835. return 0;
  836. /* End of CHSEIN */
  837. } /* chsein_ */