You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrs_rook.c 28 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {1.f,0.f};
  381. static integer c__1 = 1;
  382. /* > \brief \b CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices us
  383. ing factorization obtained with one of the bounded diagonal pivoting methods (f2cmax 2 interchanges) */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CHETRS_ROOK + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrs_
  390. rook.f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrs_
  393. rook.f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrs_
  396. rook.f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) */
  402. /* CHARACTER UPLO */
  403. /* INTEGER INFO, LDA, LDB, N, NRHS */
  404. /* INTEGER IPIV( * ) */
  405. /* COMPLEX A( LDA, * ), B( LDB, * ) */
  406. /* > \par Purpose: */
  407. /* ============= */
  408. /* > */
  409. /* > \verbatim */
  410. /* > */
  411. /* > CHETRS_ROOK solves a system of linear equations A*X = B with a complex */
  412. /* > Hermitian matrix A using the factorization A = U*D*U**H or */
  413. /* > A = L*D*L**H computed by CHETRF_ROOK. */
  414. /* > \endverbatim */
  415. /* Arguments: */
  416. /* ========== */
  417. /* > \param[in] UPLO */
  418. /* > \verbatim */
  419. /* > UPLO is CHARACTER*1 */
  420. /* > Specifies whether the details of the factorization are stored */
  421. /* > as an upper or lower triangular matrix. */
  422. /* > = 'U': Upper triangular, form is A = U*D*U**H; */
  423. /* > = 'L': Lower triangular, form is A = L*D*L**H. */
  424. /* > \endverbatim */
  425. /* > */
  426. /* > \param[in] N */
  427. /* > \verbatim */
  428. /* > N is INTEGER */
  429. /* > The order of the matrix A. N >= 0. */
  430. /* > \endverbatim */
  431. /* > */
  432. /* > \param[in] NRHS */
  433. /* > \verbatim */
  434. /* > NRHS is INTEGER */
  435. /* > The number of right hand sides, i.e., the number of columns */
  436. /* > of the matrix B. NRHS >= 0. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] A */
  440. /* > \verbatim */
  441. /* > A is COMPLEX array, dimension (LDA,N) */
  442. /* > The block diagonal matrix D and the multipliers used to */
  443. /* > obtain the factor U or L as computed by CHETRF_ROOK. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] LDA */
  447. /* > \verbatim */
  448. /* > LDA is INTEGER */
  449. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  450. /* > \endverbatim */
  451. /* > */
  452. /* > \param[in] IPIV */
  453. /* > \verbatim */
  454. /* > IPIV is INTEGER array, dimension (N) */
  455. /* > Details of the interchanges and the block structure of D */
  456. /* > as determined by CHETRF_ROOK. */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[in,out] B */
  460. /* > \verbatim */
  461. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  462. /* > On entry, the right hand side matrix B. */
  463. /* > On exit, the solution matrix X. */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[in] LDB */
  467. /* > \verbatim */
  468. /* > LDB is INTEGER */
  469. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  470. /* > \endverbatim */
  471. /* > */
  472. /* > \param[out] INFO */
  473. /* > \verbatim */
  474. /* > INFO is INTEGER */
  475. /* > = 0: successful exit */
  476. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  477. /* > \endverbatim */
  478. /* Authors: */
  479. /* ======== */
  480. /* > \author Univ. of Tennessee */
  481. /* > \author Univ. of California Berkeley */
  482. /* > \author Univ. of Colorado Denver */
  483. /* > \author NAG Ltd. */
  484. /* > \date November 2013 */
  485. /* > \ingroup complexHEcomputational */
  486. /* > \par Contributors: */
  487. /* ================== */
  488. /* > */
  489. /* > \verbatim */
  490. /* > */
  491. /* > November 2013, Igor Kozachenko, */
  492. /* > Computer Science Division, */
  493. /* > University of California, Berkeley */
  494. /* > */
  495. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  496. /* > School of Mathematics, */
  497. /* > University of Manchester */
  498. /* > */
  499. /* > \endverbatim */
  500. /* ===================================================================== */
  501. /* Subroutine */ int chetrs_rook_(char *uplo, integer *n, integer *nrhs,
  502. complex *a, integer *lda, integer *ipiv, complex *b, integer *ldb,
  503. integer *info)
  504. {
  505. /* System generated locals */
  506. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
  507. complex q__1, q__2, q__3;
  508. /* Local variables */
  509. complex akm1k;
  510. integer j, k;
  511. real s;
  512. extern logical lsame_(char *, char *);
  513. complex denom;
  514. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  515. , complex *, integer *, complex *, integer *, complex *, complex *
  516. , integer *), cgeru_(integer *, integer *, complex *,
  517. complex *, integer *, complex *, integer *, complex *, integer *),
  518. cswap_(integer *, complex *, integer *, complex *, integer *);
  519. logical upper;
  520. complex ak, bk;
  521. integer kp;
  522. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
  523. csscal_(integer *, real *, complex *, integer *), xerbla_(char *,
  524. integer *, ftnlen);
  525. complex akm1, bkm1;
  526. /* -- LAPACK computational routine (version 3.5.0) -- */
  527. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  528. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  529. /* November 2013 */
  530. /* ===================================================================== */
  531. /* Parameter adjustments */
  532. a_dim1 = *lda;
  533. a_offset = 1 + a_dim1 * 1;
  534. a -= a_offset;
  535. --ipiv;
  536. b_dim1 = *ldb;
  537. b_offset = 1 + b_dim1 * 1;
  538. b -= b_offset;
  539. /* Function Body */
  540. *info = 0;
  541. upper = lsame_(uplo, "U");
  542. if (! upper && ! lsame_(uplo, "L")) {
  543. *info = -1;
  544. } else if (*n < 0) {
  545. *info = -2;
  546. } else if (*nrhs < 0) {
  547. *info = -3;
  548. } else if (*lda < f2cmax(1,*n)) {
  549. *info = -5;
  550. } else if (*ldb < f2cmax(1,*n)) {
  551. *info = -8;
  552. }
  553. if (*info != 0) {
  554. i__1 = -(*info);
  555. xerbla_("CHETRS_ROOK", &i__1, (ftnlen)11);
  556. return 0;
  557. }
  558. /* Quick return if possible */
  559. if (*n == 0 || *nrhs == 0) {
  560. return 0;
  561. }
  562. if (upper) {
  563. /* Solve A*X = B, where A = U*D*U**H. */
  564. /* First solve U*D*X = B, overwriting B with X. */
  565. /* K is the main loop index, decreasing from N to 1 in steps of */
  566. /* 1 or 2, depending on the size of the diagonal blocks. */
  567. k = *n;
  568. L10:
  569. /* If K < 1, exit from loop. */
  570. if (k < 1) {
  571. goto L30;
  572. }
  573. if (ipiv[k] > 0) {
  574. /* 1 x 1 diagonal block */
  575. /* Interchange rows K and IPIV(K). */
  576. kp = ipiv[k];
  577. if (kp != k) {
  578. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  579. }
  580. /* Multiply by inv(U(K)), where U(K) is the transformation */
  581. /* stored in column K of A. */
  582. i__1 = k - 1;
  583. q__1.r = -1.f, q__1.i = 0.f;
  584. cgeru_(&i__1, nrhs, &q__1, &a[k * a_dim1 + 1], &c__1, &b[k +
  585. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  586. /* Multiply by the inverse of the diagonal block. */
  587. i__1 = k + k * a_dim1;
  588. s = 1.f / a[i__1].r;
  589. csscal_(nrhs, &s, &b[k + b_dim1], ldb);
  590. --k;
  591. } else {
  592. /* 2 x 2 diagonal block */
  593. /* Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1) */
  594. kp = -ipiv[k];
  595. if (kp != k) {
  596. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  597. }
  598. kp = -ipiv[k - 1];
  599. if (kp != k - 1) {
  600. cswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  601. }
  602. /* Multiply by inv(U(K)), where U(K) is the transformation */
  603. /* stored in columns K-1 and K of A. */
  604. i__1 = k - 2;
  605. q__1.r = -1.f, q__1.i = 0.f;
  606. cgeru_(&i__1, nrhs, &q__1, &a[k * a_dim1 + 1], &c__1, &b[k +
  607. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  608. i__1 = k - 2;
  609. q__1.r = -1.f, q__1.i = 0.f;
  610. cgeru_(&i__1, nrhs, &q__1, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k
  611. - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
  612. /* Multiply by the inverse of the diagonal block. */
  613. i__1 = k - 1 + k * a_dim1;
  614. akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
  615. c_div(&q__1, &a[k - 1 + (k - 1) * a_dim1], &akm1k);
  616. akm1.r = q__1.r, akm1.i = q__1.i;
  617. r_cnjg(&q__2, &akm1k);
  618. c_div(&q__1, &a[k + k * a_dim1], &q__2);
  619. ak.r = q__1.r, ak.i = q__1.i;
  620. q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i +
  621. akm1.i * ak.r;
  622. q__1.r = q__2.r - 1.f, q__1.i = q__2.i + 0.f;
  623. denom.r = q__1.r, denom.i = q__1.i;
  624. i__1 = *nrhs;
  625. for (j = 1; j <= i__1; ++j) {
  626. c_div(&q__1, &b[k - 1 + j * b_dim1], &akm1k);
  627. bkm1.r = q__1.r, bkm1.i = q__1.i;
  628. r_cnjg(&q__2, &akm1k);
  629. c_div(&q__1, &b[k + j * b_dim1], &q__2);
  630. bk.r = q__1.r, bk.i = q__1.i;
  631. i__2 = k - 1 + j * b_dim1;
  632. q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r *
  633. bkm1.i + ak.i * bkm1.r;
  634. q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i;
  635. c_div(&q__1, &q__2, &denom);
  636. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  637. i__2 = k + j * b_dim1;
  638. q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r *
  639. bk.i + akm1.i * bk.r;
  640. q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i;
  641. c_div(&q__1, &q__2, &denom);
  642. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  643. /* L20: */
  644. }
  645. k += -2;
  646. }
  647. goto L10;
  648. L30:
  649. /* Next solve U**H *X = B, overwriting B with X. */
  650. /* K is the main loop index, increasing from 1 to N in steps of */
  651. /* 1 or 2, depending on the size of the diagonal blocks. */
  652. k = 1;
  653. L40:
  654. /* If K > N, exit from loop. */
  655. if (k > *n) {
  656. goto L50;
  657. }
  658. if (ipiv[k] > 0) {
  659. /* 1 x 1 diagonal block */
  660. /* Multiply by inv(U**H(K)), where U(K) is the transformation */
  661. /* stored in column K of A. */
  662. if (k > 1) {
  663. clacgv_(nrhs, &b[k + b_dim1], ldb);
  664. i__1 = k - 1;
  665. q__1.r = -1.f, q__1.i = 0.f;
  666. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset]
  667. , ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
  668. b_dim1], ldb);
  669. clacgv_(nrhs, &b[k + b_dim1], ldb);
  670. }
  671. /* Interchange rows K and IPIV(K). */
  672. kp = ipiv[k];
  673. if (kp != k) {
  674. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  675. }
  676. ++k;
  677. } else {
  678. /* 2 x 2 diagonal block */
  679. /* Multiply by inv(U**H(K+1)), where U(K+1) is the transformation */
  680. /* stored in columns K and K+1 of A. */
  681. if (k > 1) {
  682. clacgv_(nrhs, &b[k + b_dim1], ldb);
  683. i__1 = k - 1;
  684. q__1.r = -1.f, q__1.i = 0.f;
  685. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset]
  686. , ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
  687. b_dim1], ldb);
  688. clacgv_(nrhs, &b[k + b_dim1], ldb);
  689. clacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
  690. i__1 = k - 1;
  691. q__1.r = -1.f, q__1.i = 0.f;
  692. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset]
  693. , ldb, &a[(k + 1) * a_dim1 + 1], &c__1, &c_b1, &b[k +
  694. 1 + b_dim1], ldb);
  695. clacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
  696. }
  697. /* Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1) */
  698. kp = -ipiv[k];
  699. if (kp != k) {
  700. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  701. }
  702. kp = -ipiv[k + 1];
  703. if (kp != k + 1) {
  704. cswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  705. }
  706. k += 2;
  707. }
  708. goto L40;
  709. L50:
  710. ;
  711. } else {
  712. /* Solve A*X = B, where A = L*D*L**H. */
  713. /* First solve L*D*X = B, overwriting B with X. */
  714. /* K is the main loop index, increasing from 1 to N in steps of */
  715. /* 1 or 2, depending on the size of the diagonal blocks. */
  716. k = 1;
  717. L60:
  718. /* If K > N, exit from loop. */
  719. if (k > *n) {
  720. goto L80;
  721. }
  722. if (ipiv[k] > 0) {
  723. /* 1 x 1 diagonal block */
  724. /* Interchange rows K and IPIV(K). */
  725. kp = ipiv[k];
  726. if (kp != k) {
  727. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  728. }
  729. /* Multiply by inv(L(K)), where L(K) is the transformation */
  730. /* stored in column K of A. */
  731. if (k < *n) {
  732. i__1 = *n - k;
  733. q__1.r = -1.f, q__1.i = 0.f;
  734. cgeru_(&i__1, nrhs, &q__1, &a[k + 1 + k * a_dim1], &c__1, &b[
  735. k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
  736. }
  737. /* Multiply by the inverse of the diagonal block. */
  738. i__1 = k + k * a_dim1;
  739. s = 1.f / a[i__1].r;
  740. csscal_(nrhs, &s, &b[k + b_dim1], ldb);
  741. ++k;
  742. } else {
  743. /* 2 x 2 diagonal block */
  744. /* Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1) */
  745. kp = -ipiv[k];
  746. if (kp != k) {
  747. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  748. }
  749. kp = -ipiv[k + 1];
  750. if (kp != k + 1) {
  751. cswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  752. }
  753. /* Multiply by inv(L(K)), where L(K) is the transformation */
  754. /* stored in columns K and K+1 of A. */
  755. if (k < *n - 1) {
  756. i__1 = *n - k - 1;
  757. q__1.r = -1.f, q__1.i = 0.f;
  758. cgeru_(&i__1, nrhs, &q__1, &a[k + 2 + k * a_dim1], &c__1, &b[
  759. k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
  760. i__1 = *n - k - 1;
  761. q__1.r = -1.f, q__1.i = 0.f;
  762. cgeru_(&i__1, nrhs, &q__1, &a[k + 2 + (k + 1) * a_dim1], &
  763. c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1],
  764. ldb);
  765. }
  766. /* Multiply by the inverse of the diagonal block. */
  767. i__1 = k + 1 + k * a_dim1;
  768. akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
  769. r_cnjg(&q__2, &akm1k);
  770. c_div(&q__1, &a[k + k * a_dim1], &q__2);
  771. akm1.r = q__1.r, akm1.i = q__1.i;
  772. c_div(&q__1, &a[k + 1 + (k + 1) * a_dim1], &akm1k);
  773. ak.r = q__1.r, ak.i = q__1.i;
  774. q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i +
  775. akm1.i * ak.r;
  776. q__1.r = q__2.r - 1.f, q__1.i = q__2.i + 0.f;
  777. denom.r = q__1.r, denom.i = q__1.i;
  778. i__1 = *nrhs;
  779. for (j = 1; j <= i__1; ++j) {
  780. r_cnjg(&q__2, &akm1k);
  781. c_div(&q__1, &b[k + j * b_dim1], &q__2);
  782. bkm1.r = q__1.r, bkm1.i = q__1.i;
  783. c_div(&q__1, &b[k + 1 + j * b_dim1], &akm1k);
  784. bk.r = q__1.r, bk.i = q__1.i;
  785. i__2 = k + j * b_dim1;
  786. q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r *
  787. bkm1.i + ak.i * bkm1.r;
  788. q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i;
  789. c_div(&q__1, &q__2, &denom);
  790. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  791. i__2 = k + 1 + j * b_dim1;
  792. q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r *
  793. bk.i + akm1.i * bk.r;
  794. q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i;
  795. c_div(&q__1, &q__2, &denom);
  796. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  797. /* L70: */
  798. }
  799. k += 2;
  800. }
  801. goto L60;
  802. L80:
  803. /* Next solve L**H *X = B, overwriting B with X. */
  804. /* K is the main loop index, decreasing from N to 1 in steps of */
  805. /* 1 or 2, depending on the size of the diagonal blocks. */
  806. k = *n;
  807. L90:
  808. /* If K < 1, exit from loop. */
  809. if (k < 1) {
  810. goto L100;
  811. }
  812. if (ipiv[k] > 0) {
  813. /* 1 x 1 diagonal block */
  814. /* Multiply by inv(L**H(K)), where L(K) is the transformation */
  815. /* stored in column K of A. */
  816. if (k < *n) {
  817. clacgv_(nrhs, &b[k + b_dim1], ldb);
  818. i__1 = *n - k;
  819. q__1.r = -1.f, q__1.i = 0.f;
  820. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 +
  821. b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
  822. b[k + b_dim1], ldb);
  823. clacgv_(nrhs, &b[k + b_dim1], ldb);
  824. }
  825. /* Interchange rows K and IPIV(K). */
  826. kp = ipiv[k];
  827. if (kp != k) {
  828. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  829. }
  830. --k;
  831. } else {
  832. /* 2 x 2 diagonal block */
  833. /* Multiply by inv(L**H(K-1)), where L(K-1) is the transformation */
  834. /* stored in columns K-1 and K of A. */
  835. if (k < *n) {
  836. clacgv_(nrhs, &b[k + b_dim1], ldb);
  837. i__1 = *n - k;
  838. q__1.r = -1.f, q__1.i = 0.f;
  839. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 +
  840. b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
  841. b[k + b_dim1], ldb);
  842. clacgv_(nrhs, &b[k + b_dim1], ldb);
  843. clacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
  844. i__1 = *n - k;
  845. q__1.r = -1.f, q__1.i = 0.f;
  846. cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 +
  847. b_dim1], ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &
  848. c_b1, &b[k - 1 + b_dim1], ldb);
  849. clacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
  850. }
  851. /* Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1) */
  852. kp = -ipiv[k];
  853. if (kp != k) {
  854. cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  855. }
  856. kp = -ipiv[k - 1];
  857. if (kp != k - 1) {
  858. cswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  859. }
  860. k += -2;
  861. }
  862. goto L90;
  863. L100:
  864. ;
  865. }
  866. return 0;
  867. /* End of CHETRS_ROOK */
  868. } /* chetrs_rook__ */