You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrf_rk.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c_n1 = -1;
  382. static integer c__2 = 2;
  383. /* > \brief \b CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
  384. Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download CHETRF_RK + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf_
  391. rk.f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf_
  394. rk.f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf_
  397. rk.f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE CHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, */
  403. /* INFO ) */
  404. /* CHARACTER UPLO */
  405. /* INTEGER INFO, LDA, LWORK, N */
  406. /* INTEGER IPIV( * ) */
  407. /* COMPLEX A( LDA, * ), E ( * ), WORK( * ) */
  408. /* > \par Purpose: */
  409. /* ============= */
  410. /* > */
  411. /* > \verbatim */
  412. /* > CHETRF_RK computes the factorization of a complex Hermitian matrix A */
  413. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  414. /* > */
  415. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  416. /* > */
  417. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  418. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  419. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  420. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  421. /* > */
  422. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  423. /* > For more information see Further Details section. */
  424. /* > \endverbatim */
  425. /* Arguments: */
  426. /* ========== */
  427. /* > \param[in] UPLO */
  428. /* > \verbatim */
  429. /* > UPLO is CHARACTER*1 */
  430. /* > Specifies whether the upper or lower triangular part of the */
  431. /* > Hermitian matrix A is stored: */
  432. /* > = 'U': Upper triangular */
  433. /* > = 'L': Lower triangular */
  434. /* > \endverbatim */
  435. /* > */
  436. /* > \param[in] N */
  437. /* > \verbatim */
  438. /* > N is INTEGER */
  439. /* > The order of the matrix A. N >= 0. */
  440. /* > \endverbatim */
  441. /* > */
  442. /* > \param[in,out] A */
  443. /* > \verbatim */
  444. /* > A is COMPLEX array, dimension (LDA,N) */
  445. /* > On entry, the Hermitian matrix A. */
  446. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  447. /* > of A contains the upper triangular part of the matrix A, */
  448. /* > and the strictly lower triangular part of A is not */
  449. /* > referenced. */
  450. /* > */
  451. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  452. /* > of A contains the lower triangular part of the matrix A, */
  453. /* > and the strictly upper triangular part of A is not */
  454. /* > referenced. */
  455. /* > */
  456. /* > On exit, contains: */
  457. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  458. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  459. /* > (superdiagonal (or subdiagonal) elements of D */
  460. /* > are stored on exit in array E), and */
  461. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  462. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in] LDA */
  466. /* > \verbatim */
  467. /* > LDA is INTEGER */
  468. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  469. /* > \endverbatim */
  470. /* > */
  471. /* > \param[out] E */
  472. /* > \verbatim */
  473. /* > E is COMPLEX array, dimension (N) */
  474. /* > On exit, contains the superdiagonal (or subdiagonal) */
  475. /* > elements of the Hermitian block diagonal matrix D */
  476. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  477. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  478. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  479. /* > */
  480. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  481. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  482. /* > UPLO = 'U' or UPLO = 'L' cases. */
  483. /* > \endverbatim */
  484. /* > */
  485. /* > \param[out] IPIV */
  486. /* > \verbatim */
  487. /* > IPIV is INTEGER array, dimension (N) */
  488. /* > IPIV describes the permutation matrix P in the factorization */
  489. /* > of matrix A as follows. The absolute value of IPIV(k) */
  490. /* > represents the index of row and column that were */
  491. /* > interchanged with the k-th row and column. The value of UPLO */
  492. /* > describes the order in which the interchanges were applied. */
  493. /* > Also, the sign of IPIV represents the block structure of */
  494. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  495. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  496. /* > at each factorization step. For more info see Further */
  497. /* > Details section. */
  498. /* > */
  499. /* > If UPLO = 'U', */
  500. /* > ( in factorization order, k decreases from N to 1 ): */
  501. /* > a) A single positive entry IPIV(k) > 0 means: */
  502. /* > D(k,k) is a 1-by-1 diagonal block. */
  503. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  504. /* > interchanged in the matrix A(1:N,1:N); */
  505. /* > If IPIV(k) = k, no interchange occurred. */
  506. /* > */
  507. /* > b) A pair of consecutive negative entries */
  508. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  509. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  510. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  511. /* > 1) If -IPIV(k) != k, rows and columns */
  512. /* > k and -IPIV(k) were interchanged */
  513. /* > in the matrix A(1:N,1:N). */
  514. /* > If -IPIV(k) = k, no interchange occurred. */
  515. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  516. /* > k-1 and -IPIV(k-1) were interchanged */
  517. /* > in the matrix A(1:N,1:N). */
  518. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  519. /* > */
  520. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  521. /* > */
  522. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  523. /* > */
  524. /* > If UPLO = 'L', */
  525. /* > ( in factorization order, k increases from 1 to N ): */
  526. /* > a) A single positive entry IPIV(k) > 0 means: */
  527. /* > D(k,k) is a 1-by-1 diagonal block. */
  528. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  529. /* > interchanged in the matrix A(1:N,1:N). */
  530. /* > If IPIV(k) = k, no interchange occurred. */
  531. /* > */
  532. /* > b) A pair of consecutive negative entries */
  533. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  534. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  535. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  536. /* > 1) If -IPIV(k) != k, rows and columns */
  537. /* > k and -IPIV(k) were interchanged */
  538. /* > in the matrix A(1:N,1:N). */
  539. /* > If -IPIV(k) = k, no interchange occurred. */
  540. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  541. /* > k-1 and -IPIV(k-1) were interchanged */
  542. /* > in the matrix A(1:N,1:N). */
  543. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  544. /* > */
  545. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  546. /* > */
  547. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[out] WORK */
  551. /* > \verbatim */
  552. /* > WORK is COMPLEX array, dimension ( MAX(1,LWORK) ). */
  553. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LWORK */
  557. /* > \verbatim */
  558. /* > LWORK is INTEGER */
  559. /* > The length of WORK. LWORK >=1. For best performance */
  560. /* > LWORK >= N*NB, where NB is the block size returned */
  561. /* > by ILAENV. */
  562. /* > */
  563. /* > If LWORK = -1, then a workspace query is assumed; */
  564. /* > the routine only calculates the optimal size of the WORK */
  565. /* > array, returns this value as the first entry of the WORK */
  566. /* > array, and no error message related to LWORK is issued */
  567. /* > by XERBLA. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] INFO */
  571. /* > \verbatim */
  572. /* > INFO is INTEGER */
  573. /* > = 0: successful exit */
  574. /* > */
  575. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  576. /* > */
  577. /* > > 0: If INFO = k, the matrix A is singular, because: */
  578. /* > If UPLO = 'U': column k in the upper */
  579. /* > triangular part of A contains all zeros. */
  580. /* > If UPLO = 'L': column k in the lower */
  581. /* > triangular part of A contains all zeros. */
  582. /* > */
  583. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  584. /* > elements of column k of U (or subdiagonal elements of */
  585. /* > column k of L ) are all zeros. The factorization has */
  586. /* > been completed, but the block diagonal matrix D is */
  587. /* > exactly singular, and division by zero will occur if */
  588. /* > it is used to solve a system of equations. */
  589. /* > */
  590. /* > NOTE: INFO only stores the first occurrence of */
  591. /* > a singularity, any subsequent occurrence of singularity */
  592. /* > is not stored in INFO even though the factorization */
  593. /* > always completes. */
  594. /* > \endverbatim */
  595. /* Authors: */
  596. /* ======== */
  597. /* > \author Univ. of Tennessee */
  598. /* > \author Univ. of California Berkeley */
  599. /* > \author Univ. of Colorado Denver */
  600. /* > \author NAG Ltd. */
  601. /* > \date December 2016 */
  602. /* > \ingroup complexHEcomputational */
  603. /* > \par Further Details: */
  604. /* ===================== */
  605. /* > */
  606. /* > \verbatim */
  607. /* > TODO: put correct description */
  608. /* > \endverbatim */
  609. /* > \par Contributors: */
  610. /* ================== */
  611. /* > */
  612. /* > \verbatim */
  613. /* > */
  614. /* > December 2016, Igor Kozachenko, */
  615. /* > Computer Science Division, */
  616. /* > University of California, Berkeley */
  617. /* > */
  618. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  619. /* > School of Mathematics, */
  620. /* > University of Manchester */
  621. /* > */
  622. /* > \endverbatim */
  623. /* ===================================================================== */
  624. /* Subroutine */ int chetrf_rk_(char *uplo, integer *n, complex *a, integer *
  625. lda, complex *e, integer *ipiv, complex *work, integer *lwork,
  626. integer *info)
  627. {
  628. /* System generated locals */
  629. integer a_dim1, a_offset, i__1, i__2;
  630. /* Local variables */
  631. extern /* Subroutine */ int chetf2_rk_(char *, integer *, complex *,
  632. integer *, complex *, integer *, integer *);
  633. integer i__, k;
  634. extern /* Subroutine */ int clahef_rk_(char *, integer *, integer *,
  635. integer *, complex *, integer *, complex *, integer *, complex *,
  636. integer *, integer *);
  637. extern logical lsame_(char *, char *);
  638. integer nbmin, iinfo;
  639. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  640. complex *, integer *);
  641. logical upper;
  642. integer kb, nb, ip;
  643. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  644. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  645. integer *, integer *, ftnlen, ftnlen);
  646. integer ldwork, lwkopt;
  647. logical lquery;
  648. integer iws;
  649. /* -- LAPACK computational routine (version 3.7.0) -- */
  650. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  651. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  652. /* December 2016 */
  653. /* ===================================================================== */
  654. /* Test the input parameters. */
  655. /* Parameter adjustments */
  656. a_dim1 = *lda;
  657. a_offset = 1 + a_dim1 * 1;
  658. a -= a_offset;
  659. --e;
  660. --ipiv;
  661. --work;
  662. /* Function Body */
  663. *info = 0;
  664. upper = lsame_(uplo, "U");
  665. lquery = *lwork == -1;
  666. if (! upper && ! lsame_(uplo, "L")) {
  667. *info = -1;
  668. } else if (*n < 0) {
  669. *info = -2;
  670. } else if (*lda < f2cmax(1,*n)) {
  671. *info = -4;
  672. } else if (*lwork < 1 && ! lquery) {
  673. *info = -8;
  674. }
  675. if (*info == 0) {
  676. /* Determine the block size */
  677. nb = ilaenv_(&c__1, "CHETRF_RK", uplo, n, &c_n1, &c_n1, &c_n1, (
  678. ftnlen)9, (ftnlen)1);
  679. lwkopt = *n * nb;
  680. work[1].r = (real) lwkopt, work[1].i = 0.f;
  681. }
  682. if (*info != 0) {
  683. i__1 = -(*info);
  684. xerbla_("CHETRF_RK", &i__1, (ftnlen)9);
  685. return 0;
  686. } else if (lquery) {
  687. return 0;
  688. }
  689. nbmin = 2;
  690. ldwork = *n;
  691. if (nb > 1 && nb < *n) {
  692. iws = ldwork * nb;
  693. if (*lwork < iws) {
  694. /* Computing MAX */
  695. i__1 = *lwork / ldwork;
  696. nb = f2cmax(i__1,1);
  697. /* Computing MAX */
  698. i__1 = 2, i__2 = ilaenv_(&c__2, "CHETRF_RK", uplo, n, &c_n1, &
  699. c_n1, &c_n1, (ftnlen)9, (ftnlen)1);
  700. nbmin = f2cmax(i__1,i__2);
  701. }
  702. } else {
  703. iws = 1;
  704. }
  705. if (nb < nbmin) {
  706. nb = *n;
  707. }
  708. if (upper) {
  709. /* Factorize A as U*D*U**T using the upper triangle of A */
  710. /* K is the main loop index, decreasing from N to 1 in steps of */
  711. /* KB, where KB is the number of columns factorized by CLAHEF_RK; */
  712. /* KB is either NB or NB-1, or K for the last block */
  713. k = *n;
  714. L10:
  715. /* If K < 1, exit from loop */
  716. if (k < 1) {
  717. goto L15;
  718. }
  719. if (k > nb) {
  720. /* Factorize columns k-kb+1:k of A and use blocked code to */
  721. /* update columns 1:k-kb */
  722. clahef_rk_(uplo, &k, &nb, &kb, &a[a_offset], lda, &e[1], &ipiv[1]
  723. , &work[1], &ldwork, &iinfo);
  724. } else {
  725. /* Use unblocked code to factorize columns 1:k of A */
  726. chetf2_rk_(uplo, &k, &a[a_offset], lda, &e[1], &ipiv[1], &iinfo);
  727. kb = k;
  728. }
  729. /* Set INFO on the first occurrence of a zero pivot */
  730. if (*info == 0 && iinfo > 0) {
  731. *info = iinfo;
  732. }
  733. /* No need to adjust IPIV */
  734. /* Apply permutations to the leading panel 1:k-1 */
  735. /* Read IPIV from the last block factored, i.e. */
  736. /* indices k-kb+1:k and apply row permutations to the */
  737. /* last k+1 colunms k+1:N after that block */
  738. /* (We can do the simple loop over IPIV with decrement -1, */
  739. /* since the ABS value of IPIV( I ) represents the row index */
  740. /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */
  741. if (k < *n) {
  742. i__1 = k - kb + 1;
  743. for (i__ = k; i__ >= i__1; --i__) {
  744. ip = (i__2 = ipiv[i__], abs(i__2));
  745. if (ip != i__) {
  746. i__2 = *n - k;
  747. cswap_(&i__2, &a[i__ + (k + 1) * a_dim1], lda, &a[ip + (k
  748. + 1) * a_dim1], lda);
  749. }
  750. }
  751. }
  752. /* Decrease K and return to the start of the main loop */
  753. k -= kb;
  754. goto L10;
  755. /* This label is the exit from main loop over K decreasing */
  756. /* from N to 1 in steps of KB */
  757. L15:
  758. ;
  759. } else {
  760. /* Factorize A as L*D*L**T using the lower triangle of A */
  761. /* K is the main loop index, increasing from 1 to N in steps of */
  762. /* KB, where KB is the number of columns factorized by CLAHEF_RK; */
  763. /* KB is either NB or NB-1, or N-K+1 for the last block */
  764. k = 1;
  765. L20:
  766. /* If K > N, exit from loop */
  767. if (k > *n) {
  768. goto L35;
  769. }
  770. if (k <= *n - nb) {
  771. /* Factorize columns k:k+kb-1 of A and use blocked code to */
  772. /* update columns k+kb:n */
  773. i__1 = *n - k + 1;
  774. clahef_rk_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &e[k],
  775. &ipiv[k], &work[1], &ldwork, &iinfo);
  776. } else {
  777. /* Use unblocked code to factorize columns k:n of A */
  778. i__1 = *n - k + 1;
  779. chetf2_rk_(uplo, &i__1, &a[k + k * a_dim1], lda, &e[k], &ipiv[k],
  780. &iinfo);
  781. kb = *n - k + 1;
  782. }
  783. /* Set INFO on the first occurrence of a zero pivot */
  784. if (*info == 0 && iinfo > 0) {
  785. *info = iinfo + k - 1;
  786. }
  787. /* Adjust IPIV */
  788. i__1 = k + kb - 1;
  789. for (i__ = k; i__ <= i__1; ++i__) {
  790. if (ipiv[i__] > 0) {
  791. ipiv[i__] = ipiv[i__] + k - 1;
  792. } else {
  793. ipiv[i__] = ipiv[i__] - k + 1;
  794. }
  795. }
  796. /* Apply permutations to the leading panel 1:k-1 */
  797. /* Read IPIV from the last block factored, i.e. */
  798. /* indices k:k+kb-1 and apply row permutations to the */
  799. /* first k-1 colunms 1:k-1 before that block */
  800. /* (We can do the simple loop over IPIV with increment 1, */
  801. /* since the ABS value of IPIV( I ) represents the row index */
  802. /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */
  803. if (k > 1) {
  804. i__1 = k + kb - 1;
  805. for (i__ = k; i__ <= i__1; ++i__) {
  806. ip = (i__2 = ipiv[i__], abs(i__2));
  807. if (ip != i__) {
  808. i__2 = k - 1;
  809. cswap_(&i__2, &a[i__ + a_dim1], lda, &a[ip + a_dim1], lda)
  810. ;
  811. }
  812. }
  813. }
  814. /* Increase K and return to the start of the main loop */
  815. k += kb;
  816. goto L20;
  817. /* This label is the exit from main loop over K increasing */
  818. /* from 1 to N in steps of KB */
  819. L35:
  820. /* End Lower */
  821. ;
  822. }
  823. work[1].r = (real) lwkopt, work[1].i = 0.f;
  824. return 0;
  825. /* End of CHETRF_RK */
  826. } /* chetrf_rk__ */