You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cheequb.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. /* > \brief \b CHEEQUB */
  382. /* =========== DOCUMENTATION =========== */
  383. /* Online html documentation available at */
  384. /* http://www.netlib.org/lapack/explore-html/ */
  385. /* > \htmlonly */
  386. /* > Download CHEEQUB + dependencies */
  387. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheequb
  388. .f"> */
  389. /* > [TGZ]</a> */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheequb
  391. .f"> */
  392. /* > [ZIP]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheequb
  394. .f"> */
  395. /* > [TXT]</a> */
  396. /* > \endhtmlonly */
  397. /* Definition: */
  398. /* =========== */
  399. /* SUBROUTINE CHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO ) */
  400. /* INTEGER INFO, LDA, N */
  401. /* REAL AMAX, SCOND */
  402. /* CHARACTER UPLO */
  403. /* COMPLEX A( LDA, * ), WORK( * ) */
  404. /* REAL S( * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > CHEEQUB computes row and column scalings intended to equilibrate a */
  411. /* > Hermitian matrix A (with respect to the Euclidean norm) and reduce */
  412. /* > its condition number. The scale factors S are computed by the BIN */
  413. /* > algorithm (see references) so that the scaled matrix B with elements */
  414. /* > B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of */
  415. /* > the smallest possible condition number over all possible diagonal */
  416. /* > scalings. */
  417. /* > \endverbatim */
  418. /* Arguments: */
  419. /* ========== */
  420. /* > \param[in] UPLO */
  421. /* > \verbatim */
  422. /* > UPLO is CHARACTER*1 */
  423. /* > = 'U': Upper triangle of A is stored; */
  424. /* > = 'L': Lower triangle of A is stored. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] N */
  428. /* > \verbatim */
  429. /* > N is INTEGER */
  430. /* > The order of the matrix A. N >= 0. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] A */
  434. /* > \verbatim */
  435. /* > A is COMPLEX array, dimension (LDA,N) */
  436. /* > The N-by-N Hermitian matrix whose scaling factors are to be */
  437. /* > computed. */
  438. /* > \endverbatim */
  439. /* > */
  440. /* > \param[in] LDA */
  441. /* > \verbatim */
  442. /* > LDA is INTEGER */
  443. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[out] S */
  447. /* > \verbatim */
  448. /* > S is REAL array, dimension (N) */
  449. /* > If INFO = 0, S contains the scale factors for A. */
  450. /* > \endverbatim */
  451. /* > */
  452. /* > \param[out] SCOND */
  453. /* > \verbatim */
  454. /* > SCOND is REAL */
  455. /* > If INFO = 0, S contains the ratio of the smallest S(i) to */
  456. /* > the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
  457. /* > large nor too small, it is not worth scaling by S. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[out] AMAX */
  461. /* > \verbatim */
  462. /* > AMAX is REAL */
  463. /* > Largest absolute value of any matrix element. If AMAX is */
  464. /* > very close to overflow or very close to underflow, the */
  465. /* > matrix should be scaled. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[out] WORK */
  469. /* > \verbatim */
  470. /* > WORK is COMPLEX array, dimension (2*N) */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[out] INFO */
  474. /* > \verbatim */
  475. /* > INFO is INTEGER */
  476. /* > = 0: successful exit */
  477. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  478. /* > > 0: if INFO = i, the i-th diagonal element is nonpositive. */
  479. /* > \endverbatim */
  480. /* Authors: */
  481. /* ======== */
  482. /* > \author Univ. of Tennessee */
  483. /* > \author Univ. of California Berkeley */
  484. /* > \author Univ. of Colorado Denver */
  485. /* > \author NAG Ltd. */
  486. /* > \date April 2012 */
  487. /* > \ingroup complexHEcomputational */
  488. /* > \par References: */
  489. /* ================ */
  490. /* > */
  491. /* > Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n */
  492. /* > Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n */
  493. /* > DOI 10.1023/B:NUMA.0000016606.32820.69 \n */
  494. /* > Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679 */
  495. /* > */
  496. /* ===================================================================== */
  497. /* Subroutine */ int cheequb_(char *uplo, integer *n, complex *a, integer *
  498. lda, real *s, real *scond, real *amax, complex *work, integer *info)
  499. {
  500. /* System generated locals */
  501. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  502. real r__1, r__2, r__3, r__4;
  503. doublereal d__1;
  504. complex q__1, q__2, q__3, q__4;
  505. /* Local variables */
  506. real base;
  507. integer iter;
  508. real smin, smax, d__;
  509. integer i__, j;
  510. real t, u, scale;
  511. extern logical lsame_(char *, char *);
  512. real c0, c1, c2, sumsq, si;
  513. logical up;
  514. extern real slamch_(char *);
  515. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  516. real bignum;
  517. extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
  518. *, real *);
  519. real smlnum, avg, std, tol;
  520. /* -- LAPACK computational routine (version 3.8.0) -- */
  521. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  522. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  523. /* April 2012 */
  524. /* ===================================================================== */
  525. /* Test the input parameters. */
  526. /* Parameter adjustments */
  527. a_dim1 = *lda;
  528. a_offset = 1 + a_dim1 * 1;
  529. a -= a_offset;
  530. --s;
  531. --work;
  532. /* Function Body */
  533. *info = 0;
  534. if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) {
  535. *info = -1;
  536. } else if (*n < 0) {
  537. *info = -2;
  538. } else if (*lda < f2cmax(1,*n)) {
  539. *info = -4;
  540. }
  541. if (*info != 0) {
  542. i__1 = -(*info);
  543. xerbla_("CHEEQUB", &i__1, (ftnlen)7);
  544. return 0;
  545. }
  546. up = lsame_(uplo, "U");
  547. *amax = 0.f;
  548. /* Quick return if possible. */
  549. if (*n == 0) {
  550. *scond = 1.f;
  551. return 0;
  552. }
  553. i__1 = *n;
  554. for (i__ = 1; i__ <= i__1; ++i__) {
  555. s[i__] = 0.f;
  556. }
  557. *amax = 0.f;
  558. if (up) {
  559. i__1 = *n;
  560. for (j = 1; j <= i__1; ++j) {
  561. i__2 = j - 1;
  562. for (i__ = 1; i__ <= i__2; ++i__) {
  563. /* Computing MAX */
  564. i__3 = i__ + j * a_dim1;
  565. r__3 = s[i__], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  566. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  567. s[i__] = f2cmax(r__3,r__4);
  568. /* Computing MAX */
  569. i__3 = i__ + j * a_dim1;
  570. r__3 = s[j], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  571. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  572. s[j] = f2cmax(r__3,r__4);
  573. /* Computing MAX */
  574. i__3 = i__ + j * a_dim1;
  575. r__3 = *amax, r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  576. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  577. *amax = f2cmax(r__3,r__4);
  578. }
  579. /* Computing MAX */
  580. i__2 = j + j * a_dim1;
  581. r__3 = s[j], r__4 = (r__1 = a[i__2].r, abs(r__1)) + (r__2 =
  582. r_imag(&a[j + j * a_dim1]), abs(r__2));
  583. s[j] = f2cmax(r__3,r__4);
  584. /* Computing MAX */
  585. i__2 = j + j * a_dim1;
  586. r__3 = *amax, r__4 = (r__1 = a[i__2].r, abs(r__1)) + (r__2 =
  587. r_imag(&a[j + j * a_dim1]), abs(r__2));
  588. *amax = f2cmax(r__3,r__4);
  589. }
  590. } else {
  591. i__1 = *n;
  592. for (j = 1; j <= i__1; ++j) {
  593. /* Computing MAX */
  594. i__2 = j + j * a_dim1;
  595. r__3 = s[j], r__4 = (r__1 = a[i__2].r, abs(r__1)) + (r__2 =
  596. r_imag(&a[j + j * a_dim1]), abs(r__2));
  597. s[j] = f2cmax(r__3,r__4);
  598. /* Computing MAX */
  599. i__2 = j + j * a_dim1;
  600. r__3 = *amax, r__4 = (r__1 = a[i__2].r, abs(r__1)) + (r__2 =
  601. r_imag(&a[j + j * a_dim1]), abs(r__2));
  602. *amax = f2cmax(r__3,r__4);
  603. i__2 = *n;
  604. for (i__ = j + 1; i__ <= i__2; ++i__) {
  605. /* Computing MAX */
  606. i__3 = i__ + j * a_dim1;
  607. r__3 = s[i__], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  608. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  609. s[i__] = f2cmax(r__3,r__4);
  610. /* Computing MAX */
  611. i__3 = i__ + j * a_dim1;
  612. r__3 = s[j], r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  613. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  614. s[j] = f2cmax(r__3,r__4);
  615. /* Computing MAX */
  616. i__3 = i__ + j * a_dim1;
  617. r__3 = *amax, r__4 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 =
  618. r_imag(&a[i__ + j * a_dim1]), abs(r__2));
  619. *amax = f2cmax(r__3,r__4);
  620. }
  621. }
  622. }
  623. i__1 = *n;
  624. for (j = 1; j <= i__1; ++j) {
  625. s[j] = 1.f / s[j];
  626. }
  627. tol = 1.f / sqrt(*n * 2.f);
  628. for (iter = 1; iter <= 100; ++iter) {
  629. scale = 0.f;
  630. sumsq = 0.f;
  631. /* beta = |A|s */
  632. i__1 = *n;
  633. for (i__ = 1; i__ <= i__1; ++i__) {
  634. i__2 = i__;
  635. work[i__2].r = 0.f, work[i__2].i = 0.f;
  636. }
  637. if (up) {
  638. i__1 = *n;
  639. for (j = 1; j <= i__1; ++j) {
  640. i__2 = j - 1;
  641. for (i__ = 1; i__ <= i__2; ++i__) {
  642. i__3 = i__;
  643. i__4 = i__;
  644. i__5 = i__ + j * a_dim1;
  645. r__3 = ((r__1 = a[i__5].r, abs(r__1)) + (r__2 = r_imag(&a[
  646. i__ + j * a_dim1]), abs(r__2))) * s[j];
  647. q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
  648. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  649. i__3 = j;
  650. i__4 = j;
  651. i__5 = i__ + j * a_dim1;
  652. r__3 = ((r__1 = a[i__5].r, abs(r__1)) + (r__2 = r_imag(&a[
  653. i__ + j * a_dim1]), abs(r__2))) * s[i__];
  654. q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
  655. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  656. }
  657. i__2 = j;
  658. i__3 = j;
  659. i__4 = j + j * a_dim1;
  660. r__3 = ((r__1 = a[i__4].r, abs(r__1)) + (r__2 = r_imag(&a[j +
  661. j * a_dim1]), abs(r__2))) * s[j];
  662. q__1.r = work[i__3].r + r__3, q__1.i = work[i__3].i;
  663. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  664. }
  665. } else {
  666. i__1 = *n;
  667. for (j = 1; j <= i__1; ++j) {
  668. i__2 = j;
  669. i__3 = j;
  670. i__4 = j + j * a_dim1;
  671. r__3 = ((r__1 = a[i__4].r, abs(r__1)) + (r__2 = r_imag(&a[j +
  672. j * a_dim1]), abs(r__2))) * s[j];
  673. q__1.r = work[i__3].r + r__3, q__1.i = work[i__3].i;
  674. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  675. i__2 = *n;
  676. for (i__ = j + 1; i__ <= i__2; ++i__) {
  677. i__3 = i__;
  678. i__4 = i__;
  679. i__5 = i__ + j * a_dim1;
  680. r__3 = ((r__1 = a[i__5].r, abs(r__1)) + (r__2 = r_imag(&a[
  681. i__ + j * a_dim1]), abs(r__2))) * s[j];
  682. q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
  683. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  684. i__3 = j;
  685. i__4 = j;
  686. i__5 = i__ + j * a_dim1;
  687. r__3 = ((r__1 = a[i__5].r, abs(r__1)) + (r__2 = r_imag(&a[
  688. i__ + j * a_dim1]), abs(r__2))) * s[i__];
  689. q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
  690. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  691. }
  692. }
  693. }
  694. /* avg = s^T beta / n */
  695. avg = 0.f;
  696. i__1 = *n;
  697. for (i__ = 1; i__ <= i__1; ++i__) {
  698. i__2 = i__;
  699. i__3 = i__;
  700. q__2.r = s[i__2] * work[i__3].r, q__2.i = s[i__2] * work[i__3].i;
  701. q__1.r = avg + q__2.r, q__1.i = q__2.i;
  702. avg = q__1.r;
  703. }
  704. avg /= *n;
  705. std = 0.f;
  706. i__1 = *n << 1;
  707. for (i__ = *n + 1; i__ <= i__1; ++i__) {
  708. i__2 = i__;
  709. i__3 = i__ - *n;
  710. i__4 = i__ - *n;
  711. q__2.r = s[i__3] * work[i__4].r, q__2.i = s[i__3] * work[i__4].i;
  712. q__1.r = q__2.r - avg, q__1.i = q__2.i;
  713. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  714. }
  715. classq_(n, &work[*n + 1], &c__1, &scale, &sumsq);
  716. std = scale * sqrt(sumsq / *n);
  717. if (std < tol * avg) {
  718. goto L999;
  719. }
  720. i__1 = *n;
  721. for (i__ = 1; i__ <= i__1; ++i__) {
  722. i__2 = i__ + i__ * a_dim1;
  723. t = (r__1 = a[i__2].r, abs(r__1)) + (r__2 = r_imag(&a[i__ + i__ *
  724. a_dim1]), abs(r__2));
  725. si = s[i__];
  726. c2 = (*n - 1) * t;
  727. i__2 = *n - 2;
  728. i__3 = i__;
  729. r__1 = t * si;
  730. q__2.r = work[i__3].r - r__1, q__2.i = work[i__3].i;
  731. d__1 = (doublereal) i__2;
  732. q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
  733. c1 = q__1.r;
  734. r__1 = -(t * si) * si;
  735. i__2 = i__;
  736. d__1 = 2.;
  737. q__4.r = d__1 * work[i__2].r, q__4.i = d__1 * work[i__2].i;
  738. q__3.r = si * q__4.r, q__3.i = si * q__4.i;
  739. q__2.r = r__1 + q__3.r, q__2.i = q__3.i;
  740. r__2 = *n * avg;
  741. q__1.r = q__2.r - r__2, q__1.i = q__2.i;
  742. c0 = q__1.r;
  743. d__ = c1 * c1 - c0 * 4 * c2;
  744. if (d__ <= 0.f) {
  745. *info = -1;
  746. return 0;
  747. }
  748. si = c0 * -2 / (c1 + sqrt(d__));
  749. d__ = si - s[i__];
  750. u = 0.f;
  751. if (up) {
  752. i__2 = i__;
  753. for (j = 1; j <= i__2; ++j) {
  754. i__3 = j + i__ * a_dim1;
  755. t = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[j +
  756. i__ * a_dim1]), abs(r__2));
  757. u += s[j] * t;
  758. i__3 = j;
  759. i__4 = j;
  760. r__1 = d__ * t;
  761. q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
  762. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  763. }
  764. i__2 = *n;
  765. for (j = i__ + 1; j <= i__2; ++j) {
  766. i__3 = i__ + j * a_dim1;
  767. t = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__
  768. + j * a_dim1]), abs(r__2));
  769. u += s[j] * t;
  770. i__3 = j;
  771. i__4 = j;
  772. r__1 = d__ * t;
  773. q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
  774. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  775. }
  776. } else {
  777. i__2 = i__;
  778. for (j = 1; j <= i__2; ++j) {
  779. i__3 = i__ + j * a_dim1;
  780. t = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__
  781. + j * a_dim1]), abs(r__2));
  782. u += s[j] * t;
  783. i__3 = j;
  784. i__4 = j;
  785. r__1 = d__ * t;
  786. q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
  787. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  788. }
  789. i__2 = *n;
  790. for (j = i__ + 1; j <= i__2; ++j) {
  791. i__3 = j + i__ * a_dim1;
  792. t = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[j +
  793. i__ * a_dim1]), abs(r__2));
  794. u += s[j] * t;
  795. i__3 = j;
  796. i__4 = j;
  797. r__1 = d__ * t;
  798. q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
  799. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  800. }
  801. }
  802. i__2 = i__;
  803. q__4.r = u + work[i__2].r, q__4.i = work[i__2].i;
  804. q__3.r = d__ * q__4.r, q__3.i = d__ * q__4.i;
  805. d__1 = (doublereal) (*n);
  806. q__2.r = q__3.r / d__1, q__2.i = q__3.i / d__1;
  807. q__1.r = avg + q__2.r, q__1.i = q__2.i;
  808. avg = q__1.r;
  809. s[i__] = si;
  810. }
  811. }
  812. L999:
  813. smlnum = slamch_("SAFEMIN");
  814. bignum = 1.f / smlnum;
  815. smin = bignum;
  816. smax = 0.f;
  817. t = 1.f / sqrt(avg);
  818. base = slamch_("B");
  819. u = 1.f / log(base);
  820. i__1 = *n;
  821. for (i__ = 1; i__ <= i__1; ++i__) {
  822. i__2 = (integer) (u * log(s[i__] * t));
  823. s[i__] = pow_ri(&base, &i__2);
  824. /* Computing MIN */
  825. r__1 = smin, r__2 = s[i__];
  826. smin = f2cmin(r__1,r__2);
  827. /* Computing MAX */
  828. r__1 = smax, r__2 = s[i__];
  829. smax = f2cmax(r__1,r__2);
  830. }
  831. *scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
  832. return 0;
  833. } /* cheequb_ */