You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbtrd.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static complex c_b2 = {1.f,0.f};
  382. static integer c__1 = 1;
  383. /* > \brief \b CHBTRD */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CHBTRD + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbtrd.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbtrd.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbtrd.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CHBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
  402. /* WORK, INFO ) */
  403. /* CHARACTER UPLO, VECT */
  404. /* INTEGER INFO, KD, LDAB, LDQ, N */
  405. /* REAL D( * ), E( * ) */
  406. /* COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > CHBTRD reduces a complex Hermitian band matrix A to real symmetric */
  413. /* > tridiagonal form T by a unitary similarity transformation: */
  414. /* > Q**H * A * Q = T. */
  415. /* > \endverbatim */
  416. /* Arguments: */
  417. /* ========== */
  418. /* > \param[in] VECT */
  419. /* > \verbatim */
  420. /* > VECT is CHARACTER*1 */
  421. /* > = 'N': do not form Q; */
  422. /* > = 'V': form Q; */
  423. /* > = 'U': update a matrix X, by forming X*Q. */
  424. /* > \endverbatim */
  425. /* > */
  426. /* > \param[in] UPLO */
  427. /* > \verbatim */
  428. /* > UPLO is CHARACTER*1 */
  429. /* > = 'U': Upper triangle of A is stored; */
  430. /* > = 'L': Lower triangle of A is stored. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] N */
  434. /* > \verbatim */
  435. /* > N is INTEGER */
  436. /* > The order of the matrix A. N >= 0. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] KD */
  440. /* > \verbatim */
  441. /* > KD is INTEGER */
  442. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  443. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in,out] AB */
  447. /* > \verbatim */
  448. /* > AB is COMPLEX array, dimension (LDAB,N) */
  449. /* > On entry, the upper or lower triangle of the Hermitian band */
  450. /* > matrix A, stored in the first KD+1 rows of the array. The */
  451. /* > j-th column of A is stored in the j-th column of the array AB */
  452. /* > as follows: */
  453. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  454. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  455. /* > On exit, the diagonal elements of AB are overwritten by the */
  456. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  457. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  458. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  459. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  460. /* > values generated during the reduction. */
  461. /* > \endverbatim */
  462. /* > */
  463. /* > \param[in] LDAB */
  464. /* > \verbatim */
  465. /* > LDAB is INTEGER */
  466. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[out] D */
  470. /* > \verbatim */
  471. /* > D is REAL array, dimension (N) */
  472. /* > The diagonal elements of the tridiagonal matrix T. */
  473. /* > \endverbatim */
  474. /* > */
  475. /* > \param[out] E */
  476. /* > \verbatim */
  477. /* > E is REAL array, dimension (N-1) */
  478. /* > The off-diagonal elements of the tridiagonal matrix T: */
  479. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in,out] Q */
  483. /* > \verbatim */
  484. /* > Q is COMPLEX array, dimension (LDQ,N) */
  485. /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
  486. /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
  487. /* > */
  488. /* > On exit: */
  489. /* > if VECT = 'V', Q contains the N-by-N unitary matrix Q; */
  490. /* > if VECT = 'U', Q contains the product X*Q; */
  491. /* > if VECT = 'N', the array Q is not referenced. */
  492. /* > \endverbatim */
  493. /* > */
  494. /* > \param[in] LDQ */
  495. /* > \verbatim */
  496. /* > LDQ is INTEGER */
  497. /* > The leading dimension of the array Q. */
  498. /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
  499. /* > \endverbatim */
  500. /* > */
  501. /* > \param[out] WORK */
  502. /* > \verbatim */
  503. /* > WORK is COMPLEX array, dimension (N) */
  504. /* > \endverbatim */
  505. /* > */
  506. /* > \param[out] INFO */
  507. /* > \verbatim */
  508. /* > INFO is INTEGER */
  509. /* > = 0: successful exit */
  510. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  511. /* > \endverbatim */
  512. /* Authors: */
  513. /* ======== */
  514. /* > \author Univ. of Tennessee */
  515. /* > \author Univ. of California Berkeley */
  516. /* > \author Univ. of Colorado Denver */
  517. /* > \author NAG Ltd. */
  518. /* > \date December 2016 */
  519. /* > \ingroup complexOTHERcomputational */
  520. /* > \par Further Details: */
  521. /* ===================== */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > Modified by Linda Kaufman, Bell Labs. */
  526. /* > \endverbatim */
  527. /* > */
  528. /* ===================================================================== */
  529. /* Subroutine */ int chbtrd_(char *vect, char *uplo, integer *n, integer *kd,
  530. complex *ab, integer *ldab, real *d__, real *e, complex *q, integer *
  531. ldq, complex *work, integer *info)
  532. {
  533. /* System generated locals */
  534. integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
  535. i__5, i__6;
  536. real r__1;
  537. complex q__1;
  538. /* Local variables */
  539. integer inca, jend, lend, jinc;
  540. real abst;
  541. integer incx, last;
  542. complex temp;
  543. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  544. complex *, integer *, real *, complex *);
  545. integer j1end, j1inc, i__, j, k, l;
  546. complex t;
  547. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  548. integer *);
  549. integer iqend;
  550. extern logical lsame_(char *, char *);
  551. logical initq, wantq, upper;
  552. integer i2, j1, j2;
  553. extern /* Subroutine */ int clar2v_(integer *, complex *, complex *,
  554. complex *, integer *, real *, complex *, integer *);
  555. integer nq, nr, iqaend;
  556. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
  557. claset_(char *, integer *, integer *, complex *, complex *,
  558. complex *, integer *), clartg_(complex *, complex *, real
  559. *, complex *, complex *), xerbla_(char *, integer *, ftnlen),
  560. clargv_(integer *, complex *, integer *, complex *, integer *,
  561. real *, integer *), clartv_(integer *, complex *, integer *,
  562. complex *, integer *, real *, complex *, integer *);
  563. integer kd1, ibl, iqb, kdn, jin, nrt, kdm1;
  564. /* -- LAPACK computational routine (version 3.7.0) -- */
  565. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  566. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  567. /* December 2016 */
  568. /* ===================================================================== */
  569. /* Test the input parameters */
  570. /* Parameter adjustments */
  571. ab_dim1 = *ldab;
  572. ab_offset = 1 + ab_dim1 * 1;
  573. ab -= ab_offset;
  574. --d__;
  575. --e;
  576. q_dim1 = *ldq;
  577. q_offset = 1 + q_dim1 * 1;
  578. q -= q_offset;
  579. --work;
  580. /* Function Body */
  581. initq = lsame_(vect, "V");
  582. wantq = initq || lsame_(vect, "U");
  583. upper = lsame_(uplo, "U");
  584. kd1 = *kd + 1;
  585. kdm1 = *kd - 1;
  586. incx = *ldab - 1;
  587. iqend = 1;
  588. *info = 0;
  589. if (! wantq && ! lsame_(vect, "N")) {
  590. *info = -1;
  591. } else if (! upper && ! lsame_(uplo, "L")) {
  592. *info = -2;
  593. } else if (*n < 0) {
  594. *info = -3;
  595. } else if (*kd < 0) {
  596. *info = -4;
  597. } else if (*ldab < kd1) {
  598. *info = -6;
  599. } else if (*ldq < f2cmax(1,*n) && wantq) {
  600. *info = -10;
  601. }
  602. if (*info != 0) {
  603. i__1 = -(*info);
  604. xerbla_("CHBTRD", &i__1, (ftnlen)6);
  605. return 0;
  606. }
  607. /* Quick return if possible */
  608. if (*n == 0) {
  609. return 0;
  610. }
  611. /* Initialize Q to the unit matrix, if needed */
  612. if (initq) {
  613. claset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  614. }
  615. /* Wherever possible, plane rotations are generated and applied in */
  616. /* vector operations of length NR over the index set J1:J2:KD1. */
  617. /* The real cosines and complex sines of the plane rotations are */
  618. /* stored in the arrays D and WORK. */
  619. inca = kd1 * *ldab;
  620. /* Computing MIN */
  621. i__1 = *n - 1;
  622. kdn = f2cmin(i__1,*kd);
  623. if (upper) {
  624. if (*kd > 1) {
  625. /* Reduce to complex Hermitian tridiagonal form, working with */
  626. /* the upper triangle */
  627. nr = 0;
  628. j1 = kdn + 2;
  629. j2 = 1;
  630. i__1 = kd1 + ab_dim1;
  631. i__2 = kd1 + ab_dim1;
  632. r__1 = ab[i__2].r;
  633. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  634. i__1 = *n - 2;
  635. for (i__ = 1; i__ <= i__1; ++i__) {
  636. /* Reduce i-th row of matrix to tridiagonal form */
  637. for (k = kdn + 1; k >= 2; --k) {
  638. j1 += kdn;
  639. j2 += kdn;
  640. if (nr > 0) {
  641. /* generate plane rotations to annihilate nonzero */
  642. /* elements which have been created outside the band */
  643. clargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
  644. work[j1], &kd1, &d__[j1], &kd1);
  645. /* apply rotations from the right */
  646. /* Dependent on the the number of diagonals either */
  647. /* CLARTV or CROT is used */
  648. if (nr >= (*kd << 1) - 1) {
  649. i__2 = *kd - 1;
  650. for (l = 1; l <= i__2; ++l) {
  651. clartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
  652. &inca, &ab[l + j1 * ab_dim1], &inca, &
  653. d__[j1], &work[j1], &kd1);
  654. /* L10: */
  655. }
  656. } else {
  657. jend = j1 + (nr - 1) * kd1;
  658. i__2 = jend;
  659. i__3 = kd1;
  660. for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
  661. i__2; jinc += i__3) {
  662. crot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
  663. c__1, &ab[jinc * ab_dim1 + 1], &c__1,
  664. &d__[jinc], &work[jinc]);
  665. /* L20: */
  666. }
  667. }
  668. }
  669. if (k > 2) {
  670. if (k <= *n - i__ + 1) {
  671. /* generate plane rotation to annihilate a(i,i+k-1) */
  672. /* within the band */
  673. clartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
  674. , &ab[*kd - k + 2 + (i__ + k - 1) *
  675. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  676. k - 1], &temp);
  677. i__3 = *kd - k + 3 + (i__ + k - 2) * ab_dim1;
  678. ab[i__3].r = temp.r, ab[i__3].i = temp.i;
  679. /* apply rotation from the right */
  680. i__3 = k - 3;
  681. crot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
  682. ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
  683. k - 1) * ab_dim1], &c__1, &d__[i__ + k -
  684. 1], &work[i__ + k - 1]);
  685. }
  686. ++nr;
  687. j1 = j1 - kdn - 1;
  688. }
  689. /* apply plane rotations from both sides to diagonal */
  690. /* blocks */
  691. if (nr > 0) {
  692. clar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
  693. j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
  694. &d__[j1], &work[j1], &kd1);
  695. }
  696. /* apply plane rotations from the left */
  697. if (nr > 0) {
  698. clacgv_(&nr, &work[j1], &kd1);
  699. if ((*kd << 1) - 1 < nr) {
  700. /* Dependent on the the number of diagonals either */
  701. /* CLARTV or CROT is used */
  702. i__3 = *kd - 1;
  703. for (l = 1; l <= i__3; ++l) {
  704. if (j2 + l > *n) {
  705. nrt = nr - 1;
  706. } else {
  707. nrt = nr;
  708. }
  709. if (nrt > 0) {
  710. clartv_(&nrt, &ab[*kd - l + (j1 + l) *
  711. ab_dim1], &inca, &ab[*kd - l + 1
  712. + (j1 + l) * ab_dim1], &inca, &
  713. d__[j1], &work[j1], &kd1);
  714. }
  715. /* L30: */
  716. }
  717. } else {
  718. j1end = j1 + kd1 * (nr - 2);
  719. if (j1end >= j1) {
  720. i__3 = j1end;
  721. i__2 = kd1;
  722. for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
  723. i__3; jin += i__2) {
  724. i__4 = *kd - 1;
  725. crot_(&i__4, &ab[*kd - 1 + (jin + 1) *
  726. ab_dim1], &incx, &ab[*kd + (jin +
  727. 1) * ab_dim1], &incx, &d__[jin], &
  728. work[jin]);
  729. /* L40: */
  730. }
  731. }
  732. /* Computing MIN */
  733. i__2 = kdm1, i__3 = *n - j2;
  734. lend = f2cmin(i__2,i__3);
  735. last = j1end + kd1;
  736. if (lend > 0) {
  737. crot_(&lend, &ab[*kd - 1 + (last + 1) *
  738. ab_dim1], &incx, &ab[*kd + (last + 1)
  739. * ab_dim1], &incx, &d__[last], &work[
  740. last]);
  741. }
  742. }
  743. }
  744. if (wantq) {
  745. /* accumulate product of plane rotations in Q */
  746. if (initq) {
  747. /* take advantage of the fact that Q was */
  748. /* initially the Identity matrix */
  749. iqend = f2cmax(iqend,j2);
  750. /* Computing MAX */
  751. i__2 = 0, i__3 = k - 3;
  752. i2 = f2cmax(i__2,i__3);
  753. iqaend = i__ * *kd + 1;
  754. if (k == 2) {
  755. iqaend += *kd;
  756. }
  757. iqaend = f2cmin(iqaend,iqend);
  758. i__2 = j2;
  759. i__3 = kd1;
  760. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  761. += i__3) {
  762. ibl = i__ - i2 / kdm1;
  763. ++i2;
  764. /* Computing MAX */
  765. i__4 = 1, i__5 = j - ibl;
  766. iqb = f2cmax(i__4,i__5);
  767. nq = iqaend + 1 - iqb;
  768. /* Computing MIN */
  769. i__4 = iqaend + *kd;
  770. iqaend = f2cmin(i__4,iqend);
  771. r_cnjg(&q__1, &work[j]);
  772. crot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  773. &q[iqb + j * q_dim1], &c__1, &d__[j],
  774. &q__1);
  775. /* L50: */
  776. }
  777. } else {
  778. i__3 = j2;
  779. i__2 = kd1;
  780. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  781. += i__2) {
  782. r_cnjg(&q__1, &work[j]);
  783. crot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  784. j * q_dim1 + 1], &c__1, &d__[j], &
  785. q__1);
  786. /* L60: */
  787. }
  788. }
  789. }
  790. if (j2 + kdn > *n) {
  791. /* adjust J2 to keep within the bounds of the matrix */
  792. --nr;
  793. j2 = j2 - kdn - 1;
  794. }
  795. i__2 = j2;
  796. i__3 = kd1;
  797. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
  798. {
  799. /* create nonzero element a(j-1,j+kd) outside the band */
  800. /* and store it in WORK */
  801. i__4 = j + *kd;
  802. i__5 = j;
  803. i__6 = (j + *kd) * ab_dim1 + 1;
  804. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  805. ab[i__6].i, q__1.i = work[i__5].r * ab[i__6]
  806. .i + work[i__5].i * ab[i__6].r;
  807. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  808. i__4 = (j + *kd) * ab_dim1 + 1;
  809. i__5 = j;
  810. i__6 = (j + *kd) * ab_dim1 + 1;
  811. q__1.r = d__[i__5] * ab[i__6].r, q__1.i = d__[i__5] *
  812. ab[i__6].i;
  813. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  814. /* L70: */
  815. }
  816. /* L80: */
  817. }
  818. /* L90: */
  819. }
  820. }
  821. if (*kd > 0) {
  822. /* make off-diagonal elements real and copy them to E */
  823. i__1 = *n - 1;
  824. for (i__ = 1; i__ <= i__1; ++i__) {
  825. i__3 = *kd + (i__ + 1) * ab_dim1;
  826. t.r = ab[i__3].r, t.i = ab[i__3].i;
  827. abst = c_abs(&t);
  828. i__3 = *kd + (i__ + 1) * ab_dim1;
  829. ab[i__3].r = abst, ab[i__3].i = 0.f;
  830. e[i__] = abst;
  831. if (abst != 0.f) {
  832. q__1.r = t.r / abst, q__1.i = t.i / abst;
  833. t.r = q__1.r, t.i = q__1.i;
  834. } else {
  835. t.r = 1.f, t.i = 0.f;
  836. }
  837. if (i__ < *n - 1) {
  838. i__3 = *kd + (i__ + 2) * ab_dim1;
  839. i__2 = *kd + (i__ + 2) * ab_dim1;
  840. q__1.r = ab[i__2].r * t.r - ab[i__2].i * t.i, q__1.i = ab[
  841. i__2].r * t.i + ab[i__2].i * t.r;
  842. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  843. }
  844. if (wantq) {
  845. r_cnjg(&q__1, &t);
  846. cscal_(n, &q__1, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  847. }
  848. /* L100: */
  849. }
  850. } else {
  851. /* set E to zero if original matrix was diagonal */
  852. i__1 = *n - 1;
  853. for (i__ = 1; i__ <= i__1; ++i__) {
  854. e[i__] = 0.f;
  855. /* L110: */
  856. }
  857. }
  858. /* copy diagonal elements to D */
  859. i__1 = *n;
  860. for (i__ = 1; i__ <= i__1; ++i__) {
  861. i__3 = i__;
  862. i__2 = kd1 + i__ * ab_dim1;
  863. d__[i__3] = ab[i__2].r;
  864. /* L120: */
  865. }
  866. } else {
  867. if (*kd > 1) {
  868. /* Reduce to complex Hermitian tridiagonal form, working with */
  869. /* the lower triangle */
  870. nr = 0;
  871. j1 = kdn + 2;
  872. j2 = 1;
  873. i__1 = ab_dim1 + 1;
  874. i__3 = ab_dim1 + 1;
  875. r__1 = ab[i__3].r;
  876. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  877. i__1 = *n - 2;
  878. for (i__ = 1; i__ <= i__1; ++i__) {
  879. /* Reduce i-th column of matrix to tridiagonal form */
  880. for (k = kdn + 1; k >= 2; --k) {
  881. j1 += kdn;
  882. j2 += kdn;
  883. if (nr > 0) {
  884. /* generate plane rotations to annihilate nonzero */
  885. /* elements which have been created outside the band */
  886. clargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
  887. work[j1], &kd1, &d__[j1], &kd1);
  888. /* apply plane rotations from one side */
  889. /* Dependent on the the number of diagonals either */
  890. /* CLARTV or CROT is used */
  891. if (nr > (*kd << 1) - 1) {
  892. i__3 = *kd - 1;
  893. for (l = 1; l <= i__3; ++l) {
  894. clartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
  895. ab_dim1], &inca, &ab[kd1 - l + 1 + (
  896. j1 - kd1 + l) * ab_dim1], &inca, &d__[
  897. j1], &work[j1], &kd1);
  898. /* L130: */
  899. }
  900. } else {
  901. jend = j1 + kd1 * (nr - 1);
  902. i__3 = jend;
  903. i__2 = kd1;
  904. for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
  905. i__3; jinc += i__2) {
  906. crot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
  907. , &incx, &ab[kd1 + (jinc - *kd) *
  908. ab_dim1], &incx, &d__[jinc], &work[
  909. jinc]);
  910. /* L140: */
  911. }
  912. }
  913. }
  914. if (k > 2) {
  915. if (k <= *n - i__ + 1) {
  916. /* generate plane rotation to annihilate a(i+k-1,i) */
  917. /* within the band */
  918. clartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
  919. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  920. k - 1], &temp);
  921. i__2 = k - 1 + i__ * ab_dim1;
  922. ab[i__2].r = temp.r, ab[i__2].i = temp.i;
  923. /* apply rotation from the left */
  924. i__2 = k - 3;
  925. i__3 = *ldab - 1;
  926. i__4 = *ldab - 1;
  927. crot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
  928. i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
  929. i__4, &d__[i__ + k - 1], &work[i__ + k -
  930. 1]);
  931. }
  932. ++nr;
  933. j1 = j1 - kdn - 1;
  934. }
  935. /* apply plane rotations from both sides to diagonal */
  936. /* blocks */
  937. if (nr > 0) {
  938. clar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
  939. ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
  940. inca, &d__[j1], &work[j1], &kd1);
  941. }
  942. /* apply plane rotations from the right */
  943. /* Dependent on the the number of diagonals either */
  944. /* CLARTV or CROT is used */
  945. if (nr > 0) {
  946. clacgv_(&nr, &work[j1], &kd1);
  947. if (nr > (*kd << 1) - 1) {
  948. i__2 = *kd - 1;
  949. for (l = 1; l <= i__2; ++l) {
  950. if (j2 + l > *n) {
  951. nrt = nr - 1;
  952. } else {
  953. nrt = nr;
  954. }
  955. if (nrt > 0) {
  956. clartv_(&nrt, &ab[l + 2 + (j1 - 1) *
  957. ab_dim1], &inca, &ab[l + 1 + j1 *
  958. ab_dim1], &inca, &d__[j1], &work[
  959. j1], &kd1);
  960. }
  961. /* L150: */
  962. }
  963. } else {
  964. j1end = j1 + kd1 * (nr - 2);
  965. if (j1end >= j1) {
  966. i__2 = j1end;
  967. i__3 = kd1;
  968. for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
  969. j1inc <= i__2; j1inc += i__3) {
  970. crot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
  971. 3], &c__1, &ab[j1inc * ab_dim1 +
  972. 2], &c__1, &d__[j1inc], &work[
  973. j1inc]);
  974. /* L160: */
  975. }
  976. }
  977. /* Computing MIN */
  978. i__3 = kdm1, i__2 = *n - j2;
  979. lend = f2cmin(i__3,i__2);
  980. last = j1end + kd1;
  981. if (lend > 0) {
  982. crot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
  983. c__1, &ab[last * ab_dim1 + 2], &c__1,
  984. &d__[last], &work[last]);
  985. }
  986. }
  987. }
  988. if (wantq) {
  989. /* accumulate product of plane rotations in Q */
  990. if (initq) {
  991. /* take advantage of the fact that Q was */
  992. /* initially the Identity matrix */
  993. iqend = f2cmax(iqend,j2);
  994. /* Computing MAX */
  995. i__3 = 0, i__2 = k - 3;
  996. i2 = f2cmax(i__3,i__2);
  997. iqaend = i__ * *kd + 1;
  998. if (k == 2) {
  999. iqaend += *kd;
  1000. }
  1001. iqaend = f2cmin(iqaend,iqend);
  1002. i__3 = j2;
  1003. i__2 = kd1;
  1004. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  1005. += i__2) {
  1006. ibl = i__ - i2 / kdm1;
  1007. ++i2;
  1008. /* Computing MAX */
  1009. i__4 = 1, i__5 = j - ibl;
  1010. iqb = f2cmax(i__4,i__5);
  1011. nq = iqaend + 1 - iqb;
  1012. /* Computing MIN */
  1013. i__4 = iqaend + *kd;
  1014. iqaend = f2cmin(i__4,iqend);
  1015. crot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  1016. &q[iqb + j * q_dim1], &c__1, &d__[j],
  1017. &work[j]);
  1018. /* L170: */
  1019. }
  1020. } else {
  1021. i__2 = j2;
  1022. i__3 = kd1;
  1023. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  1024. += i__3) {
  1025. crot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  1026. j * q_dim1 + 1], &c__1, &d__[j], &
  1027. work[j]);
  1028. /* L180: */
  1029. }
  1030. }
  1031. }
  1032. if (j2 + kdn > *n) {
  1033. /* adjust J2 to keep within the bounds of the matrix */
  1034. --nr;
  1035. j2 = j2 - kdn - 1;
  1036. }
  1037. i__3 = j2;
  1038. i__2 = kd1;
  1039. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
  1040. {
  1041. /* create nonzero element a(j+kd,j-1) outside the */
  1042. /* band and store it in WORK */
  1043. i__4 = j + *kd;
  1044. i__5 = j;
  1045. i__6 = kd1 + j * ab_dim1;
  1046. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i *
  1047. ab[i__6].i, q__1.i = work[i__5].r * ab[i__6]
  1048. .i + work[i__5].i * ab[i__6].r;
  1049. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1050. i__4 = kd1 + j * ab_dim1;
  1051. i__5 = j;
  1052. i__6 = kd1 + j * ab_dim1;
  1053. q__1.r = d__[i__5] * ab[i__6].r, q__1.i = d__[i__5] *
  1054. ab[i__6].i;
  1055. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1056. /* L190: */
  1057. }
  1058. /* L200: */
  1059. }
  1060. /* L210: */
  1061. }
  1062. }
  1063. if (*kd > 0) {
  1064. /* make off-diagonal elements real and copy them to E */
  1065. i__1 = *n - 1;
  1066. for (i__ = 1; i__ <= i__1; ++i__) {
  1067. i__2 = i__ * ab_dim1 + 2;
  1068. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1069. abst = c_abs(&t);
  1070. i__2 = i__ * ab_dim1 + 2;
  1071. ab[i__2].r = abst, ab[i__2].i = 0.f;
  1072. e[i__] = abst;
  1073. if (abst != 0.f) {
  1074. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1075. t.r = q__1.r, t.i = q__1.i;
  1076. } else {
  1077. t.r = 1.f, t.i = 0.f;
  1078. }
  1079. if (i__ < *n - 1) {
  1080. i__2 = (i__ + 1) * ab_dim1 + 2;
  1081. i__3 = (i__ + 1) * ab_dim1 + 2;
  1082. q__1.r = ab[i__3].r * t.r - ab[i__3].i * t.i, q__1.i = ab[
  1083. i__3].r * t.i + ab[i__3].i * t.r;
  1084. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1085. }
  1086. if (wantq) {
  1087. cscal_(n, &t, &q[(i__ + 1) * q_dim1 + 1], &c__1);
  1088. }
  1089. /* L220: */
  1090. }
  1091. } else {
  1092. /* set E to zero if original matrix was diagonal */
  1093. i__1 = *n - 1;
  1094. for (i__ = 1; i__ <= i__1; ++i__) {
  1095. e[i__] = 0.f;
  1096. /* L230: */
  1097. }
  1098. }
  1099. /* copy diagonal elements to D */
  1100. i__1 = *n;
  1101. for (i__ = 1; i__ <= i__1; ++i__) {
  1102. i__2 = i__;
  1103. i__3 = i__ * ab_dim1 + 1;
  1104. d__[i__2] = ab[i__3].r;
  1105. /* L240: */
  1106. }
  1107. }
  1108. return 0;
  1109. /* End of CHBTRD */
  1110. } /* chbtrd_ */