You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgvx.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static complex c_b2 = {1.f,0.f};
  382. static integer c__1 = 1;
  383. /* > \brief \b CHBGVX */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download CHBGVX + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvx.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvx.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvx.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, */
  402. /* LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, */
  403. /* LDZ, WORK, RWORK, IWORK, IFAIL, INFO ) */
  404. /* CHARACTER JOBZ, RANGE, UPLO */
  405. /* INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M, */
  406. /* $ N */
  407. /* REAL ABSTOL, VL, VU */
  408. /* INTEGER IFAIL( * ), IWORK( * ) */
  409. /* REAL RWORK( * ), W( * ) */
  410. /* COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ), */
  411. /* $ WORK( * ), Z( LDZ, * ) */
  412. /* > \par Purpose: */
  413. /* ============= */
  414. /* > */
  415. /* > \verbatim */
  416. /* > */
  417. /* > CHBGVX computes all the eigenvalues, and optionally, the eigenvectors */
  418. /* > of a complex generalized Hermitian-definite banded eigenproblem, of */
  419. /* > the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
  420. /* > and banded, and B is also positive definite. Eigenvalues and */
  421. /* > eigenvectors can be selected by specifying either all eigenvalues, */
  422. /* > a range of values or a range of indices for the desired eigenvalues. */
  423. /* > \endverbatim */
  424. /* Arguments: */
  425. /* ========== */
  426. /* > \param[in] JOBZ */
  427. /* > \verbatim */
  428. /* > JOBZ is CHARACTER*1 */
  429. /* > = 'N': Compute eigenvalues only; */
  430. /* > = 'V': Compute eigenvalues and eigenvectors. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] RANGE */
  434. /* > \verbatim */
  435. /* > RANGE is CHARACTER*1 */
  436. /* > = 'A': all eigenvalues will be found; */
  437. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  438. /* > will be found; */
  439. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  440. /* > \endverbatim */
  441. /* > */
  442. /* > \param[in] UPLO */
  443. /* > \verbatim */
  444. /* > UPLO is CHARACTER*1 */
  445. /* > = 'U': Upper triangles of A and B are stored; */
  446. /* > = 'L': Lower triangles of A and B are stored. */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[in] N */
  450. /* > \verbatim */
  451. /* > N is INTEGER */
  452. /* > The order of the matrices A and B. N >= 0. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] KA */
  456. /* > \verbatim */
  457. /* > KA is INTEGER */
  458. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  459. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] KB */
  463. /* > \verbatim */
  464. /* > KB is INTEGER */
  465. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  466. /* > or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[in,out] AB */
  470. /* > \verbatim */
  471. /* > AB is COMPLEX array, dimension (LDAB, N) */
  472. /* > On entry, the upper or lower triangle of the Hermitian band */
  473. /* > matrix A, stored in the first ka+1 rows of the array. The */
  474. /* > j-th column of A is stored in the j-th column of the array AB */
  475. /* > as follows: */
  476. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  477. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  478. /* > */
  479. /* > On exit, the contents of AB are destroyed. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDAB */
  483. /* > \verbatim */
  484. /* > LDAB is INTEGER */
  485. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in,out] BB */
  489. /* > \verbatim */
  490. /* > BB is COMPLEX array, dimension (LDBB, N) */
  491. /* > On entry, the upper or lower triangle of the Hermitian band */
  492. /* > matrix B, stored in the first kb+1 rows of the array. The */
  493. /* > j-th column of B is stored in the j-th column of the array BB */
  494. /* > as follows: */
  495. /* > if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for f2cmax(1,j-kb)<=i<=j; */
  496. /* > if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=f2cmin(n,j+kb). */
  497. /* > */
  498. /* > On exit, the factor S from the split Cholesky factorization */
  499. /* > B = S**H*S, as returned by CPBSTF. */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[in] LDBB */
  503. /* > \verbatim */
  504. /* > LDBB is INTEGER */
  505. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  506. /* > \endverbatim */
  507. /* > */
  508. /* > \param[out] Q */
  509. /* > \verbatim */
  510. /* > Q is COMPLEX array, dimension (LDQ, N) */
  511. /* > If JOBZ = 'V', the n-by-n matrix used in the reduction of */
  512. /* > A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
  513. /* > and consequently C to tridiagonal form. */
  514. /* > If JOBZ = 'N', the array Q is not referenced. */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \param[in] LDQ */
  518. /* > \verbatim */
  519. /* > LDQ is INTEGER */
  520. /* > The leading dimension of the array Q. If JOBZ = 'N', */
  521. /* > LDQ >= 1. If JOBZ = 'V', LDQ >= f2cmax(1,N). */
  522. /* > \endverbatim */
  523. /* > */
  524. /* > \param[in] VL */
  525. /* > \verbatim */
  526. /* > VL is REAL */
  527. /* > */
  528. /* > If RANGE='V', the lower bound of the interval to */
  529. /* > be searched for eigenvalues. VL < VU. */
  530. /* > Not referenced if RANGE = 'A' or 'I'. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] VU */
  534. /* > \verbatim */
  535. /* > VU is REAL */
  536. /* > */
  537. /* > If RANGE='V', the upper bound of the interval to */
  538. /* > be searched for eigenvalues. VL < VU. */
  539. /* > Not referenced if RANGE = 'A' or 'I'. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] IL */
  543. /* > \verbatim */
  544. /* > IL is INTEGER */
  545. /* > */
  546. /* > If RANGE='I', the index of the */
  547. /* > smallest eigenvalue to be returned. */
  548. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  549. /* > Not referenced if RANGE = 'A' or 'V'. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] IU */
  553. /* > \verbatim */
  554. /* > IU is INTEGER */
  555. /* > */
  556. /* > If RANGE='I', the index of the */
  557. /* > largest eigenvalue to be returned. */
  558. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  559. /* > Not referenced if RANGE = 'A' or 'V'. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] ABSTOL */
  563. /* > \verbatim */
  564. /* > ABSTOL is REAL */
  565. /* > The absolute error tolerance for the eigenvalues. */
  566. /* > An approximate eigenvalue is accepted as converged */
  567. /* > when it is determined to lie in an interval [a,b] */
  568. /* > of width less than or equal to */
  569. /* > */
  570. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  571. /* > */
  572. /* > where EPS is the machine precision. If ABSTOL is less than */
  573. /* > or equal to zero, then EPS*|T| will be used in its place, */
  574. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  575. /* > by reducing AP to tridiagonal form. */
  576. /* > */
  577. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  578. /* > set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
  579. /* > If this routine returns with INFO>0, indicating that some */
  580. /* > eigenvectors did not converge, try setting ABSTOL to */
  581. /* > 2*SLAMCH('S'). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[out] M */
  585. /* > \verbatim */
  586. /* > M is INTEGER */
  587. /* > The total number of eigenvalues found. 0 <= M <= N. */
  588. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] W */
  592. /* > \verbatim */
  593. /* > W is REAL array, dimension (N) */
  594. /* > If INFO = 0, the eigenvalues in ascending order. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] Z */
  598. /* > \verbatim */
  599. /* > Z is COMPLEX array, dimension (LDZ, N) */
  600. /* > If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
  601. /* > eigenvectors, with the i-th column of Z holding the */
  602. /* > eigenvector associated with W(i). The eigenvectors are */
  603. /* > normalized so that Z**H*B*Z = I. */
  604. /* > If JOBZ = 'N', then Z is not referenced. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDZ */
  608. /* > \verbatim */
  609. /* > LDZ is INTEGER */
  610. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  611. /* > JOBZ = 'V', LDZ >= N. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] WORK */
  615. /* > \verbatim */
  616. /* > WORK is COMPLEX array, dimension (N) */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] RWORK */
  620. /* > \verbatim */
  621. /* > RWORK is REAL array, dimension (7*N) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] IWORK */
  625. /* > \verbatim */
  626. /* > IWORK is INTEGER array, dimension (5*N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] IFAIL */
  630. /* > \verbatim */
  631. /* > IFAIL is INTEGER array, dimension (N) */
  632. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  633. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  634. /* > indices of the eigenvectors that failed to converge. */
  635. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] INFO */
  639. /* > \verbatim */
  640. /* > INFO is INTEGER */
  641. /* > = 0: successful exit */
  642. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  643. /* > > 0: if INFO = i, and i is: */
  644. /* > <= N: then i eigenvectors failed to converge. Their */
  645. /* > indices are stored in array IFAIL. */
  646. /* > > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */
  647. /* > returned INFO = i: B is not positive definite. */
  648. /* > The factorization of B could not be completed and */
  649. /* > no eigenvalues or eigenvectors were computed. */
  650. /* > \endverbatim */
  651. /* Authors: */
  652. /* ======== */
  653. /* > \author Univ. of Tennessee */
  654. /* > \author Univ. of California Berkeley */
  655. /* > \author Univ. of Colorado Denver */
  656. /* > \author NAG Ltd. */
  657. /* > \date June 2016 */
  658. /* > \ingroup complexOTHEReigen */
  659. /* > \par Contributors: */
  660. /* ================== */
  661. /* > */
  662. /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
  663. /* ===================================================================== */
  664. /* Subroutine */ int chbgvx_(char *jobz, char *range, char *uplo, integer *n,
  665. integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb,
  666. integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer *
  667. il, integer *iu, real *abstol, integer *m, real *w, complex *z__,
  668. integer *ldz, complex *work, real *rwork, integer *iwork, integer *
  669. ifail, integer *info)
  670. {
  671. /* System generated locals */
  672. integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1,
  673. z_offset, i__1, i__2;
  674. /* Local variables */
  675. integer indd, inde;
  676. char vect[1];
  677. logical test;
  678. integer itmp1, i__, j, indee;
  679. extern logical lsame_(char *, char *);
  680. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  681. , complex *, integer *, complex *, integer *, complex *, complex *
  682. , integer *);
  683. integer iinfo;
  684. char order[1];
  685. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  686. complex *, integer *), cswap_(integer *, complex *, integer *,
  687. complex *, integer *);
  688. logical upper;
  689. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  690. integer *);
  691. logical wantz;
  692. integer jj;
  693. logical alleig, indeig;
  694. integer indibl;
  695. extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *,
  696. complex *, integer *, real *, real *, complex *, integer *,
  697. complex *, integer *);
  698. logical valeig;
  699. extern /* Subroutine */ int chbgst_(char *, char *, integer *, integer *,
  700. integer *, complex *, integer *, complex *, integer *, complex *,
  701. integer *, complex *, real *, integer *), clacpy_(
  702. char *, integer *, integer *, complex *, integer *, complex *,
  703. integer *), xerbla_(char *, integer *, ftnlen), cpbstf_(
  704. char *, integer *, integer *, complex *, integer *, integer *);
  705. integer indiwk, indisp;
  706. extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *,
  707. real *, integer *, integer *, complex *, integer *, real *,
  708. integer *, integer *, integer *);
  709. integer indrwk, indwrk;
  710. extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
  711. complex *, integer *, real *, integer *), ssterf_(integer
  712. *, real *, real *, integer *);
  713. integer nsplit;
  714. extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *,
  715. real *, integer *, integer *, real *, real *, real *, integer *,
  716. integer *, real *, integer *, integer *, real *, integer *,
  717. integer *);
  718. real tmp1;
  719. /* -- LAPACK driver routine (version 3.7.0) -- */
  720. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  721. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  722. /* June 2016 */
  723. /* ===================================================================== */
  724. /* Test the input parameters. */
  725. /* Parameter adjustments */
  726. ab_dim1 = *ldab;
  727. ab_offset = 1 + ab_dim1 * 1;
  728. ab -= ab_offset;
  729. bb_dim1 = *ldbb;
  730. bb_offset = 1 + bb_dim1 * 1;
  731. bb -= bb_offset;
  732. q_dim1 = *ldq;
  733. q_offset = 1 + q_dim1 * 1;
  734. q -= q_offset;
  735. --w;
  736. z_dim1 = *ldz;
  737. z_offset = 1 + z_dim1 * 1;
  738. z__ -= z_offset;
  739. --work;
  740. --rwork;
  741. --iwork;
  742. --ifail;
  743. /* Function Body */
  744. wantz = lsame_(jobz, "V");
  745. upper = lsame_(uplo, "U");
  746. alleig = lsame_(range, "A");
  747. valeig = lsame_(range, "V");
  748. indeig = lsame_(range, "I");
  749. *info = 0;
  750. if (! (wantz || lsame_(jobz, "N"))) {
  751. *info = -1;
  752. } else if (! (alleig || valeig || indeig)) {
  753. *info = -2;
  754. } else if (! (upper || lsame_(uplo, "L"))) {
  755. *info = -3;
  756. } else if (*n < 0) {
  757. *info = -4;
  758. } else if (*ka < 0) {
  759. *info = -5;
  760. } else if (*kb < 0 || *kb > *ka) {
  761. *info = -6;
  762. } else if (*ldab < *ka + 1) {
  763. *info = -8;
  764. } else if (*ldbb < *kb + 1) {
  765. *info = -10;
  766. } else if (*ldq < 1 || wantz && *ldq < *n) {
  767. *info = -12;
  768. } else {
  769. if (valeig) {
  770. if (*n > 0 && *vu <= *vl) {
  771. *info = -14;
  772. }
  773. } else if (indeig) {
  774. if (*il < 1 || *il > f2cmax(1,*n)) {
  775. *info = -15;
  776. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  777. *info = -16;
  778. }
  779. }
  780. }
  781. if (*info == 0) {
  782. if (*ldz < 1 || wantz && *ldz < *n) {
  783. *info = -21;
  784. }
  785. }
  786. if (*info != 0) {
  787. i__1 = -(*info);
  788. xerbla_("CHBGVX", &i__1, (ftnlen)6);
  789. return 0;
  790. }
  791. /* Quick return if possible */
  792. *m = 0;
  793. if (*n == 0) {
  794. return 0;
  795. }
  796. /* Form a split Cholesky factorization of B. */
  797. cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
  798. if (*info != 0) {
  799. *info = *n + *info;
  800. return 0;
  801. }
  802. /* Transform problem to standard eigenvalue problem. */
  803. chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
  804. &q[q_offset], ldq, &work[1], &rwork[1], &iinfo);
  805. /* Solve the standard eigenvalue problem. */
  806. /* Reduce Hermitian band matrix to tridiagonal form. */
  807. indd = 1;
  808. inde = indd + *n;
  809. indrwk = inde + *n;
  810. indwrk = 1;
  811. if (wantz) {
  812. *(unsigned char *)vect = 'U';
  813. } else {
  814. *(unsigned char *)vect = 'N';
  815. }
  816. chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[
  817. inde], &q[q_offset], ldq, &work[indwrk], &iinfo);
  818. /* If all eigenvalues are desired and ABSTOL is less than or equal */
  819. /* to zero, then call SSTERF or CSTEQR. If this fails for some */
  820. /* eigenvalue, then try SSTEBZ. */
  821. test = FALSE_;
  822. if (indeig) {
  823. if (*il == 1 && *iu == *n) {
  824. test = TRUE_;
  825. }
  826. }
  827. if ((alleig || test) && *abstol <= 0.f) {
  828. scopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
  829. indee = indrwk + (*n << 1);
  830. i__1 = *n - 1;
  831. scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
  832. if (! wantz) {
  833. ssterf_(n, &w[1], &rwork[indee], info);
  834. } else {
  835. clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
  836. csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
  837. rwork[indrwk], info);
  838. if (*info == 0) {
  839. i__1 = *n;
  840. for (i__ = 1; i__ <= i__1; ++i__) {
  841. ifail[i__] = 0;
  842. /* L10: */
  843. }
  844. }
  845. }
  846. if (*info == 0) {
  847. *m = *n;
  848. goto L30;
  849. }
  850. *info = 0;
  851. }
  852. /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */
  853. /* call CSTEIN. */
  854. if (wantz) {
  855. *(unsigned char *)order = 'B';
  856. } else {
  857. *(unsigned char *)order = 'E';
  858. }
  859. indibl = 1;
  860. indisp = indibl + *n;
  861. indiwk = indisp + *n;
  862. sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[
  863. inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[
  864. indrwk], &iwork[indiwk], info);
  865. if (wantz) {
  866. cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
  867. iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
  868. indiwk], &ifail[1], info);
  869. /* Apply unitary matrix used in reduction to tridiagonal */
  870. /* form to eigenvectors returned by CSTEIN. */
  871. i__1 = *m;
  872. for (j = 1; j <= i__1; ++j) {
  873. ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
  874. cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
  875. c_b1, &z__[j * z_dim1 + 1], &c__1);
  876. /* L20: */
  877. }
  878. }
  879. L30:
  880. /* If eigenvalues are not in order, then sort them, along with */
  881. /* eigenvectors. */
  882. if (wantz) {
  883. i__1 = *m - 1;
  884. for (j = 1; j <= i__1; ++j) {
  885. i__ = 0;
  886. tmp1 = w[j];
  887. i__2 = *m;
  888. for (jj = j + 1; jj <= i__2; ++jj) {
  889. if (w[jj] < tmp1) {
  890. i__ = jj;
  891. tmp1 = w[jj];
  892. }
  893. /* L40: */
  894. }
  895. if (i__ != 0) {
  896. itmp1 = iwork[indibl + i__ - 1];
  897. w[i__] = w[j];
  898. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  899. w[j] = tmp1;
  900. iwork[indibl + j - 1] = itmp1;
  901. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  902. &c__1);
  903. if (*info != 0) {
  904. itmp1 = ifail[i__];
  905. ifail[i__] = ifail[j];
  906. ifail[j] = itmp1;
  907. }
  908. }
  909. /* L50: */
  910. }
  911. }
  912. return 0;
  913. /* End of CHBGVX */
  914. } /* chbgvx_ */