You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggsvd3.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c_n1 = -1;
  381. static integer c__1 = 1;
  382. /* > \brief <b> CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b> */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download CGGSVD3 + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd3
  389. .f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd3
  392. .f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd3
  395. .f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE CGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, */
  401. /* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, */
  402. /* LWORK, RWORK, IWORK, INFO ) */
  403. /* CHARACTER JOBQ, JOBU, JOBV */
  404. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK */
  405. /* INTEGER IWORK( * ) */
  406. /* REAL ALPHA( * ), BETA( * ), RWORK( * ) */
  407. /* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  408. /* $ U( LDU, * ), V( LDV, * ), WORK( * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > CGGSVD3 computes the generalized singular value decomposition (GSVD) */
  415. /* > of an M-by-N complex matrix A and P-by-N complex matrix B: */
  416. /* > */
  417. /* > U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R ) */
  418. /* > */
  419. /* > where U, V and Q are unitary matrices. */
  420. /* > Let K+L = the effective numerical rank of the */
  421. /* > matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper */
  422. /* > triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal" */
  423. /* > matrices and of the following structures, respectively: */
  424. /* > */
  425. /* > If M-K-L >= 0, */
  426. /* > */
  427. /* > K L */
  428. /* > D1 = K ( I 0 ) */
  429. /* > L ( 0 C ) */
  430. /* > M-K-L ( 0 0 ) */
  431. /* > */
  432. /* > K L */
  433. /* > D2 = L ( 0 S ) */
  434. /* > P-L ( 0 0 ) */
  435. /* > */
  436. /* > N-K-L K L */
  437. /* > ( 0 R ) = K ( 0 R11 R12 ) */
  438. /* > L ( 0 0 R22 ) */
  439. /* > */
  440. /* > where */
  441. /* > */
  442. /* > C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
  443. /* > S = diag( BETA(K+1), ... , BETA(K+L) ), */
  444. /* > C**2 + S**2 = I. */
  445. /* > */
  446. /* > R is stored in A(1:K+L,N-K-L+1:N) on exit. */
  447. /* > */
  448. /* > If M-K-L < 0, */
  449. /* > */
  450. /* > K M-K K+L-M */
  451. /* > D1 = K ( I 0 0 ) */
  452. /* > M-K ( 0 C 0 ) */
  453. /* > */
  454. /* > K M-K K+L-M */
  455. /* > D2 = M-K ( 0 S 0 ) */
  456. /* > K+L-M ( 0 0 I ) */
  457. /* > P-L ( 0 0 0 ) */
  458. /* > */
  459. /* > N-K-L K M-K K+L-M */
  460. /* > ( 0 R ) = K ( 0 R11 R12 R13 ) */
  461. /* > M-K ( 0 0 R22 R23 ) */
  462. /* > K+L-M ( 0 0 0 R33 ) */
  463. /* > */
  464. /* > where */
  465. /* > */
  466. /* > C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
  467. /* > S = diag( BETA(K+1), ... , BETA(M) ), */
  468. /* > C**2 + S**2 = I. */
  469. /* > */
  470. /* > (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
  471. /* > ( 0 R22 R23 ) */
  472. /* > in B(M-K+1:L,N+M-K-L+1:N) on exit. */
  473. /* > */
  474. /* > The routine computes C, S, R, and optionally the unitary */
  475. /* > transformation matrices U, V and Q. */
  476. /* > */
  477. /* > In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
  478. /* > A and B implicitly gives the SVD of A*inv(B): */
  479. /* > A*inv(B) = U*(D1*inv(D2))*V**H. */
  480. /* > If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also */
  481. /* > equal to the CS decomposition of A and B. Furthermore, the GSVD can */
  482. /* > be used to derive the solution of the eigenvalue problem: */
  483. /* > A**H*A x = lambda* B**H*B x. */
  484. /* > In some literature, the GSVD of A and B is presented in the form */
  485. /* > U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 ) */
  486. /* > where U and V are orthogonal and X is nonsingular, and D1 and D2 are */
  487. /* > ``diagonal''. The former GSVD form can be converted to the latter */
  488. /* > form by taking the nonsingular matrix X as */
  489. /* > */
  490. /* > X = Q*( I 0 ) */
  491. /* > ( 0 inv(R) ) */
  492. /* > \endverbatim */
  493. /* Arguments: */
  494. /* ========== */
  495. /* > \param[in] JOBU */
  496. /* > \verbatim */
  497. /* > JOBU is CHARACTER*1 */
  498. /* > = 'U': Unitary matrix U is computed; */
  499. /* > = 'N': U is not computed. */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[in] JOBV */
  503. /* > \verbatim */
  504. /* > JOBV is CHARACTER*1 */
  505. /* > = 'V': Unitary matrix V is computed; */
  506. /* > = 'N': V is not computed. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[in] JOBQ */
  510. /* > \verbatim */
  511. /* > JOBQ is CHARACTER*1 */
  512. /* > = 'Q': Unitary matrix Q is computed; */
  513. /* > = 'N': Q is not computed. */
  514. /* > \endverbatim */
  515. /* > */
  516. /* > \param[in] M */
  517. /* > \verbatim */
  518. /* > M is INTEGER */
  519. /* > The number of rows of the matrix A. M >= 0. */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \param[in] N */
  523. /* > \verbatim */
  524. /* > N is INTEGER */
  525. /* > The number of columns of the matrices A and B. N >= 0. */
  526. /* > \endverbatim */
  527. /* > */
  528. /* > \param[in] P */
  529. /* > \verbatim */
  530. /* > P is INTEGER */
  531. /* > The number of rows of the matrix B. P >= 0. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[out] K */
  535. /* > \verbatim */
  536. /* > K is INTEGER */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[out] L */
  540. /* > \verbatim */
  541. /* > L is INTEGER */
  542. /* > */
  543. /* > On exit, K and L specify the dimension of the subblocks */
  544. /* > described in Purpose. */
  545. /* > K + L = effective numerical rank of (A**H,B**H)**H. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is COMPLEX array, dimension (LDA,N) */
  551. /* > On entry, the M-by-N matrix A. */
  552. /* > On exit, A contains the triangular matrix R, or part of R. */
  553. /* > See Purpose for details. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDA */
  557. /* > \verbatim */
  558. /* > LDA is INTEGER */
  559. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] B */
  563. /* > \verbatim */
  564. /* > B is COMPLEX array, dimension (LDB,N) */
  565. /* > On entry, the P-by-N matrix B. */
  566. /* > On exit, B contains part of the triangular matrix R if */
  567. /* > M-K-L < 0. See Purpose for details. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] ALPHA */
  577. /* > \verbatim */
  578. /* > ALPHA is REAL array, dimension (N) */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] BETA */
  582. /* > \verbatim */
  583. /* > BETA is REAL array, dimension (N) */
  584. /* > */
  585. /* > On exit, ALPHA and BETA contain the generalized singular */
  586. /* > value pairs of A and B; */
  587. /* > ALPHA(1:K) = 1, */
  588. /* > BETA(1:K) = 0, */
  589. /* > and if M-K-L >= 0, */
  590. /* > ALPHA(K+1:K+L) = C, */
  591. /* > BETA(K+1:K+L) = S, */
  592. /* > or if M-K-L < 0, */
  593. /* > ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
  594. /* > BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
  595. /* > and */
  596. /* > ALPHA(K+L+1:N) = 0 */
  597. /* > BETA(K+L+1:N) = 0 */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] U */
  601. /* > \verbatim */
  602. /* > U is COMPLEX array, dimension (LDU,M) */
  603. /* > If JOBU = 'U', U contains the M-by-M unitary matrix U. */
  604. /* > If JOBU = 'N', U is not referenced. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDU */
  608. /* > \verbatim */
  609. /* > LDU is INTEGER */
  610. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  611. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] V */
  615. /* > \verbatim */
  616. /* > V is COMPLEX array, dimension (LDV,P) */
  617. /* > If JOBV = 'V', V contains the P-by-P unitary matrix V. */
  618. /* > If JOBV = 'N', V is not referenced. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDV */
  622. /* > \verbatim */
  623. /* > LDV is INTEGER */
  624. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  625. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] Q */
  629. /* > \verbatim */
  630. /* > Q is COMPLEX array, dimension (LDQ,N) */
  631. /* > If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q. */
  632. /* > If JOBQ = 'N', Q is not referenced. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDQ */
  636. /* > \verbatim */
  637. /* > LDQ is INTEGER */
  638. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  639. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] WORK */
  643. /* > \verbatim */
  644. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  645. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[in] LWORK */
  649. /* > \verbatim */
  650. /* > LWORK is INTEGER */
  651. /* > The dimension of the array WORK. */
  652. /* > */
  653. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  654. /* > only calculates the optimal size of the WORK array, returns */
  655. /* > this value as the first entry of the WORK array, and no error */
  656. /* > message related to LWORK is issued by XERBLA. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] RWORK */
  660. /* > \verbatim */
  661. /* > RWORK is REAL array, dimension (2*N) */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[out] IWORK */
  665. /* > \verbatim */
  666. /* > IWORK is INTEGER array, dimension (N) */
  667. /* > On exit, IWORK stores the sorting information. More */
  668. /* > precisely, the following loop will sort ALPHA */
  669. /* > for I = K+1, f2cmin(M,K+L) */
  670. /* > swap ALPHA(I) and ALPHA(IWORK(I)) */
  671. /* > endfor */
  672. /* > such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] INFO */
  676. /* > \verbatim */
  677. /* > INFO is INTEGER */
  678. /* > = 0: successful exit. */
  679. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  680. /* > > 0: if INFO = 1, the Jacobi-type procedure failed to */
  681. /* > converge. For further details, see subroutine CTGSJA. */
  682. /* > \endverbatim */
  683. /* > \par Internal Parameters: */
  684. /* ========================= */
  685. /* > */
  686. /* > \verbatim */
  687. /* > TOLA REAL */
  688. /* > TOLB REAL */
  689. /* > TOLA and TOLB are the thresholds to determine the effective */
  690. /* > rank of (A**H,B**H)**H. Generally, they are set to */
  691. /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
  692. /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
  693. /* > The size of TOLA and TOLB may affect the size of backward */
  694. /* > errors of the decomposition. */
  695. /* > \endverbatim */
  696. /* Authors: */
  697. /* ======== */
  698. /* > \author Univ. of Tennessee */
  699. /* > \author Univ. of California Berkeley */
  700. /* > \author Univ. of Colorado Denver */
  701. /* > \author NAG Ltd. */
  702. /* > \date August 2015 */
  703. /* > \ingroup complexGEsing */
  704. /* > \par Contributors: */
  705. /* ================== */
  706. /* > */
  707. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  708. /* > California at Berkeley, USA */
  709. /* > */
  710. /* > \par Further Details: */
  711. /* ===================== */
  712. /* > */
  713. /* > CGGSVD3 replaces the deprecated subroutine CGGSVD. */
  714. /* > */
  715. /* ===================================================================== */
  716. /* Subroutine */ int cggsvd3_(char *jobu, char *jobv, char *jobq, integer *m,
  717. integer *n, integer *p, integer *k, integer *l, complex *a, integer *
  718. lda, complex *b, integer *ldb, real *alpha, real *beta, complex *u,
  719. integer *ldu, complex *v, integer *ldv, complex *q, integer *ldq,
  720. complex *work, integer *lwork, real *rwork, integer *iwork, integer *
  721. info)
  722. {
  723. /* System generated locals */
  724. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  725. u_offset, v_dim1, v_offset, i__1, i__2;
  726. complex q__1;
  727. /* Local variables */
  728. integer ibnd;
  729. real tola;
  730. integer isub;
  731. real tolb, unfl, temp, smax;
  732. integer ncallmycycle, i__, j;
  733. extern logical lsame_(char *, char *);
  734. real anorm, bnorm;
  735. logical wantq;
  736. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  737. integer *);
  738. logical wantu, wantv;
  739. extern real clange_(char *, integer *, integer *, complex *, integer *,
  740. real *), slamch_(char *);
  741. extern /* Subroutine */ int ctgsja_(char *, char *, char *, integer *,
  742. integer *, integer *, integer *, integer *, complex *, integer *,
  743. complex *, integer *, real *, real *, real *, real *, complex *,
  744. integer *, complex *, integer *, complex *, integer *, complex *,
  745. integer *, integer *), xerbla_(char *,
  746. integer *, ftnlen);
  747. integer lwkopt;
  748. logical lquery;
  749. extern /* Subroutine */ int cggsvp3_(char *, char *, char *, integer *,
  750. integer *, integer *, complex *, integer *, complex *, integer *,
  751. real *, real *, integer *, integer *, complex *, integer *,
  752. complex *, integer *, complex *, integer *, integer *, real *,
  753. complex *, complex *, integer *, integer *);
  754. real ulp;
  755. /* -- LAPACK driver routine (version 3.7.0) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* August 2015 */
  759. /* ===================================================================== */
  760. /* Decode and test the input parameters */
  761. /* Parameter adjustments */
  762. a_dim1 = *lda;
  763. a_offset = 1 + a_dim1 * 1;
  764. a -= a_offset;
  765. b_dim1 = *ldb;
  766. b_offset = 1 + b_dim1 * 1;
  767. b -= b_offset;
  768. --alpha;
  769. --beta;
  770. u_dim1 = *ldu;
  771. u_offset = 1 + u_dim1 * 1;
  772. u -= u_offset;
  773. v_dim1 = *ldv;
  774. v_offset = 1 + v_dim1 * 1;
  775. v -= v_offset;
  776. q_dim1 = *ldq;
  777. q_offset = 1 + q_dim1 * 1;
  778. q -= q_offset;
  779. --work;
  780. --rwork;
  781. --iwork;
  782. /* Function Body */
  783. wantu = lsame_(jobu, "U");
  784. wantv = lsame_(jobv, "V");
  785. wantq = lsame_(jobq, "Q");
  786. lquery = *lwork == -1;
  787. lwkopt = 1;
  788. /* Test the input arguments */
  789. *info = 0;
  790. if (! (wantu || lsame_(jobu, "N"))) {
  791. *info = -1;
  792. } else if (! (wantv || lsame_(jobv, "N"))) {
  793. *info = -2;
  794. } else if (! (wantq || lsame_(jobq, "N"))) {
  795. *info = -3;
  796. } else if (*m < 0) {
  797. *info = -4;
  798. } else if (*n < 0) {
  799. *info = -5;
  800. } else if (*p < 0) {
  801. *info = -6;
  802. } else if (*lda < f2cmax(1,*m)) {
  803. *info = -10;
  804. } else if (*ldb < f2cmax(1,*p)) {
  805. *info = -12;
  806. } else if (*ldu < 1 || wantu && *ldu < *m) {
  807. *info = -16;
  808. } else if (*ldv < 1 || wantv && *ldv < *p) {
  809. *info = -18;
  810. } else if (*ldq < 1 || wantq && *ldq < *n) {
  811. *info = -20;
  812. } else if (*lwork < 1 && ! lquery) {
  813. *info = -24;
  814. }
  815. /* Compute workspace */
  816. if (*info == 0) {
  817. cggsvp3_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset],
  818. ldb, &tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv,
  819. &q[q_offset], ldq, &iwork[1], &rwork[1], &work[1], &work[1],
  820. &c_n1, info);
  821. lwkopt = *n + (integer) work[1].r;
  822. /* Computing MAX */
  823. i__1 = *n << 1;
  824. lwkopt = f2cmax(i__1,lwkopt);
  825. lwkopt = f2cmax(1,lwkopt);
  826. q__1.r = (real) lwkopt, q__1.i = 0.f;
  827. work[1].r = q__1.r, work[1].i = q__1.i;
  828. }
  829. if (*info != 0) {
  830. i__1 = -(*info);
  831. xerbla_("CGGSVD3", &i__1, (ftnlen)7);
  832. return 0;
  833. }
  834. if (lquery) {
  835. return 0;
  836. }
  837. /* Compute the Frobenius norm of matrices A and B */
  838. anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]);
  839. bnorm = clange_("1", p, n, &b[b_offset], ldb, &rwork[1]);
  840. /* Get machine precision and set up threshold for determining */
  841. /* the effective numerical rank of the matrices A and B. */
  842. ulp = slamch_("Precision");
  843. unfl = slamch_("Safe Minimum");
  844. tola = f2cmax(*m,*n) * f2cmax(anorm,unfl) * ulp;
  845. tolb = f2cmax(*p,*n) * f2cmax(bnorm,unfl) * ulp;
  846. i__1 = *lwork - *n;
  847. cggsvp3_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb,
  848. &tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
  849. q_offset], ldq, &iwork[1], &rwork[1], &work[1], &work[*n + 1], &
  850. i__1, info);
  851. /* Compute the GSVD of two upper "triangular" matrices */
  852. ctgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
  853. ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
  854. v_offset], ldv, &q[q_offset], ldq, &work[1], &ncallmycycle, info);
  855. /* Sort the singular values and store the pivot indices in IWORK */
  856. /* Copy ALPHA to RWORK, then sort ALPHA in RWORK */
  857. scopy_(n, &alpha[1], &c__1, &rwork[1], &c__1);
  858. /* Computing MIN */
  859. i__1 = *l, i__2 = *m - *k;
  860. ibnd = f2cmin(i__1,i__2);
  861. i__1 = ibnd;
  862. for (i__ = 1; i__ <= i__1; ++i__) {
  863. /* Scan for largest ALPHA(K+I) */
  864. isub = i__;
  865. smax = rwork[*k + i__];
  866. i__2 = ibnd;
  867. for (j = i__ + 1; j <= i__2; ++j) {
  868. temp = rwork[*k + j];
  869. if (temp > smax) {
  870. isub = j;
  871. smax = temp;
  872. }
  873. /* L10: */
  874. }
  875. if (isub != i__) {
  876. rwork[*k + isub] = rwork[*k + i__];
  877. rwork[*k + i__] = smax;
  878. iwork[*k + i__] = *k + isub;
  879. } else {
  880. iwork[*k + i__] = *k + i__;
  881. }
  882. /* L20: */
  883. }
  884. q__1.r = (real) lwkopt, q__1.i = 0.f;
  885. work[1].r = q__1.r, work[1].i = q__1.i;
  886. return 0;
  887. /* End of CGGSVD3 */
  888. } /* cggsvd3_ */