You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelsy.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static complex c_b2 = {1.f,0.f};
  382. static integer c__1 = 1;
  383. static integer c_n1 = -1;
  384. static integer c__0 = 0;
  385. static integer c__2 = 2;
  386. /* > \brief <b> CGELSY solves overdetermined or underdetermined systems for GE matrices</b> */
  387. /* =========== DOCUMENTATION =========== */
  388. /* Online html documentation available at */
  389. /* http://www.netlib.org/lapack/explore-html/ */
  390. /* > \htmlonly */
  391. /* > Download CGELSY + dependencies */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsy.
  393. f"> */
  394. /* > [TGZ]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsy.
  396. f"> */
  397. /* > [ZIP]</a> */
  398. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsy.
  399. f"> */
  400. /* > [TXT]</a> */
  401. /* > \endhtmlonly */
  402. /* Definition: */
  403. /* =========== */
  404. /* SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
  405. /* WORK, LWORK, RWORK, INFO ) */
  406. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  407. /* REAL RCOND */
  408. /* INTEGER JPVT( * ) */
  409. /* REAL RWORK( * ) */
  410. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  411. /* > \par Purpose: */
  412. /* ============= */
  413. /* > */
  414. /* > \verbatim */
  415. /* > */
  416. /* > CGELSY computes the minimum-norm solution to a complex linear least */
  417. /* > squares problem: */
  418. /* > minimize || A * X - B || */
  419. /* > using a complete orthogonal factorization of A. A is an M-by-N */
  420. /* > matrix which may be rank-deficient. */
  421. /* > */
  422. /* > Several right hand side vectors b and solution vectors x can be */
  423. /* > handled in a single call; they are stored as the columns of the */
  424. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  425. /* > matrix X. */
  426. /* > */
  427. /* > The routine first computes a QR factorization with column pivoting: */
  428. /* > A * P = Q * [ R11 R12 ] */
  429. /* > [ 0 R22 ] */
  430. /* > with R11 defined as the largest leading submatrix whose estimated */
  431. /* > condition number is less than 1/RCOND. The order of R11, RANK, */
  432. /* > is the effective rank of A. */
  433. /* > */
  434. /* > Then, R22 is considered to be negligible, and R12 is annihilated */
  435. /* > by unitary transformations from the right, arriving at the */
  436. /* > complete orthogonal factorization: */
  437. /* > A * P = Q * [ T11 0 ] * Z */
  438. /* > [ 0 0 ] */
  439. /* > The minimum-norm solution is then */
  440. /* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
  441. /* > [ 0 ] */
  442. /* > where Q1 consists of the first RANK columns of Q. */
  443. /* > */
  444. /* > This routine is basically identical to the original xGELSX except */
  445. /* > three differences: */
  446. /* > o The permutation of matrix B (the right hand side) is faster and */
  447. /* > more simple. */
  448. /* > o The call to the subroutine xGEQPF has been substituted by the */
  449. /* > the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
  450. /* > version of the QR factorization with column pivoting. */
  451. /* > o Matrix B (the right hand side) is updated with Blas-3. */
  452. /* > \endverbatim */
  453. /* Arguments: */
  454. /* ========== */
  455. /* > \param[in] M */
  456. /* > \verbatim */
  457. /* > M is INTEGER */
  458. /* > The number of rows of the matrix A. M >= 0. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] N */
  462. /* > \verbatim */
  463. /* > N is INTEGER */
  464. /* > The number of columns of the matrix A. N >= 0. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in] NRHS */
  468. /* > \verbatim */
  469. /* > NRHS is INTEGER */
  470. /* > The number of right hand sides, i.e., the number of */
  471. /* > columns of matrices B and X. NRHS >= 0. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in,out] A */
  475. /* > \verbatim */
  476. /* > A is COMPLEX array, dimension (LDA,N) */
  477. /* > On entry, the M-by-N matrix A. */
  478. /* > On exit, A has been overwritten by details of its */
  479. /* > complete orthogonal factorization. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDA */
  483. /* > \verbatim */
  484. /* > LDA is INTEGER */
  485. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in,out] B */
  489. /* > \verbatim */
  490. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  491. /* > On entry, the M-by-NRHS right hand side matrix B. */
  492. /* > On exit, the N-by-NRHS solution matrix X. */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[in] LDB */
  496. /* > \verbatim */
  497. /* > LDB is INTEGER */
  498. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  499. /* > \endverbatim */
  500. /* > */
  501. /* > \param[in,out] JPVT */
  502. /* > \verbatim */
  503. /* > JPVT is INTEGER array, dimension (N) */
  504. /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
  505. /* > to the front of AP, otherwise column i is a free column. */
  506. /* > On exit, if JPVT(i) = k, then the i-th column of A*P */
  507. /* > was the k-th column of A. */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[in] RCOND */
  511. /* > \verbatim */
  512. /* > RCOND is REAL */
  513. /* > RCOND is used to determine the effective rank of A, which */
  514. /* > is defined as the order of the largest leading triangular */
  515. /* > submatrix R11 in the QR factorization with pivoting of A, */
  516. /* > whose estimated condition number < 1/RCOND. */
  517. /* > \endverbatim */
  518. /* > */
  519. /* > \param[out] RANK */
  520. /* > \verbatim */
  521. /* > RANK is INTEGER */
  522. /* > The effective rank of A, i.e., the order of the submatrix */
  523. /* > R11. This is the same as the order of the submatrix T11 */
  524. /* > in the complete orthogonal factorization of A. */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[out] WORK */
  528. /* > \verbatim */
  529. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  530. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] LWORK */
  534. /* > \verbatim */
  535. /* > LWORK is INTEGER */
  536. /* > The dimension of the array WORK. */
  537. /* > The unblocked strategy requires that: */
  538. /* > LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */
  539. /* > where MN = f2cmin(M,N). */
  540. /* > The block algorithm requires that: */
  541. /* > LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */
  542. /* > where NB is an upper bound on the blocksize returned */
  543. /* > by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR, */
  544. /* > and CUNMRZ. */
  545. /* > */
  546. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  547. /* > only calculates the optimal size of the WORK array, returns */
  548. /* > this value as the first entry of the WORK array, and no error */
  549. /* > message related to LWORK is issued by XERBLA. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[out] RWORK */
  553. /* > \verbatim */
  554. /* > RWORK is REAL array, dimension (2*N) */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] INFO */
  558. /* > \verbatim */
  559. /* > INFO is INTEGER */
  560. /* > = 0: successful exit */
  561. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  562. /* > \endverbatim */
  563. /* Authors: */
  564. /* ======== */
  565. /* > \author Univ. of Tennessee */
  566. /* > \author Univ. of California Berkeley */
  567. /* > \author Univ. of Colorado Denver */
  568. /* > \author NAG Ltd. */
  569. /* > \date December 2016 */
  570. /* > \ingroup complexGEsolve */
  571. /* > \par Contributors: */
  572. /* ================== */
  573. /* > */
  574. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n */
  575. /* > E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  576. /* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  577. /* > */
  578. /* ===================================================================== */
  579. /* Subroutine */ int cgelsy_(integer *m, integer *n, integer *nrhs, complex *
  580. a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond,
  581. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  582. info)
  583. {
  584. /* System generated locals */
  585. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  586. real r__1, r__2;
  587. complex q__1;
  588. /* Local variables */
  589. real anrm, bnrm, smin, smax;
  590. integer i__, j, iascl, ibscl;
  591. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  592. complex *, integer *);
  593. integer ismin, ismax;
  594. complex c1, c2;
  595. extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *,
  596. integer *, integer *, complex *, complex *, integer *, complex *,
  597. integer *), claic1_(integer *,
  598. integer *, complex *, real *, complex *, complex *, real *,
  599. complex *, complex *);
  600. real wsize;
  601. complex s1, s2;
  602. extern /* Subroutine */ int cgeqp3_(integer *, integer *, complex *,
  603. integer *, integer *, complex *, complex *, integer *, real *,
  604. integer *);
  605. integer nb;
  606. extern /* Subroutine */ int slabad_(real *, real *);
  607. extern real clange_(char *, integer *, integer *, complex *, integer *,
  608. real *);
  609. integer mn;
  610. extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
  611. real *, integer *, integer *, complex *, integer *, integer *);
  612. extern real slamch_(char *);
  613. extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
  614. *, complex *, complex *, integer *), xerbla_(char *,
  615. integer *, ftnlen);
  616. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  617. integer *, integer *, ftnlen, ftnlen);
  618. real bignum;
  619. integer nb1, nb2, nb3, nb4;
  620. extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
  621. integer *, complex *, integer *, complex *, complex *, integer *,
  622. complex *, integer *, integer *);
  623. real sminpr, smaxpr, smlnum;
  624. extern /* Subroutine */ int cunmrz_(char *, char *, integer *, integer *,
  625. integer *, integer *, complex *, integer *, complex *, complex *,
  626. integer *, complex *, integer *, integer *);
  627. integer lwkopt;
  628. logical lquery;
  629. extern /* Subroutine */ int ctzrzf_(integer *, integer *, complex *,
  630. integer *, complex *, complex *, integer *, integer *);
  631. /* -- LAPACK driver routine (version 3.7.0) -- */
  632. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  633. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  634. /* December 2016 */
  635. /* ===================================================================== */
  636. /* Parameter adjustments */
  637. a_dim1 = *lda;
  638. a_offset = 1 + a_dim1 * 1;
  639. a -= a_offset;
  640. b_dim1 = *ldb;
  641. b_offset = 1 + b_dim1 * 1;
  642. b -= b_offset;
  643. --jpvt;
  644. --work;
  645. --rwork;
  646. /* Function Body */
  647. mn = f2cmin(*m,*n);
  648. ismin = mn + 1;
  649. ismax = (mn << 1) + 1;
  650. /* Test the input arguments. */
  651. *info = 0;
  652. nb1 = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
  653. ftnlen)1);
  654. nb2 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
  655. ftnlen)1);
  656. nb3 = ilaenv_(&c__1, "CUNMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
  657. 1);
  658. nb4 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
  659. 1);
  660. /* Computing MAX */
  661. i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
  662. nb = f2cmax(i__1,nb4);
  663. /* Computing MAX */
  664. i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = f2cmax(i__1,i__2),
  665. i__2 = (mn << 1) + nb * *nrhs;
  666. lwkopt = f2cmax(i__1,i__2);
  667. q__1.r = (real) lwkopt, q__1.i = 0.f;
  668. work[1].r = q__1.r, work[1].i = q__1.i;
  669. lquery = *lwork == -1;
  670. if (*m < 0) {
  671. *info = -1;
  672. } else if (*n < 0) {
  673. *info = -2;
  674. } else if (*nrhs < 0) {
  675. *info = -3;
  676. } else if (*lda < f2cmax(1,*m)) {
  677. *info = -5;
  678. } else /* if(complicated condition) */ {
  679. /* Computing MAX */
  680. i__1 = f2cmax(1,*m);
  681. if (*ldb < f2cmax(i__1,*n)) {
  682. *info = -7;
  683. } else /* if(complicated condition) */ {
  684. /* Computing MAX */
  685. i__1 = mn << 1, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = mn +
  686. *nrhs;
  687. if (*lwork < mn + f2cmax(i__1,i__2) && ! lquery) {
  688. *info = -12;
  689. }
  690. }
  691. }
  692. if (*info != 0) {
  693. i__1 = -(*info);
  694. xerbla_("CGELSY", &i__1, (ftnlen)6);
  695. return 0;
  696. } else if (lquery) {
  697. return 0;
  698. }
  699. /* Quick return if possible */
  700. /* Computing MIN */
  701. i__1 = f2cmin(*m,*n);
  702. if (f2cmin(i__1,*nrhs) == 0) {
  703. *rank = 0;
  704. return 0;
  705. }
  706. /* Get machine parameters */
  707. smlnum = slamch_("S") / slamch_("P");
  708. bignum = 1.f / smlnum;
  709. slabad_(&smlnum, &bignum);
  710. /* Scale A, B if f2cmax entries outside range [SMLNUM,BIGNUM] */
  711. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  712. iascl = 0;
  713. if (anrm > 0.f && anrm < smlnum) {
  714. /* Scale matrix norm up to SMLNUM */
  715. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  716. info);
  717. iascl = 1;
  718. } else if (anrm > bignum) {
  719. /* Scale matrix norm down to BIGNUM */
  720. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  721. info);
  722. iascl = 2;
  723. } else if (anrm == 0.f) {
  724. /* Matrix all zero. Return zero solution. */
  725. i__1 = f2cmax(*m,*n);
  726. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  727. *rank = 0;
  728. goto L70;
  729. }
  730. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  731. ibscl = 0;
  732. if (bnrm > 0.f && bnrm < smlnum) {
  733. /* Scale matrix norm up to SMLNUM */
  734. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  735. info);
  736. ibscl = 1;
  737. } else if (bnrm > bignum) {
  738. /* Scale matrix norm down to BIGNUM */
  739. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  740. info);
  741. ibscl = 2;
  742. }
  743. /* Compute QR factorization with column pivoting of A: */
  744. /* A * P = Q * R */
  745. i__1 = *lwork - mn;
  746. cgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
  747. &rwork[1], info);
  748. i__1 = mn + 1;
  749. wsize = mn + work[i__1].r;
  750. /* complex workspace: MN+NB*(N+1). real workspace 2*N. */
  751. /* Details of Householder rotations stored in WORK(1:MN). */
  752. /* Determine RANK using incremental condition estimation */
  753. i__1 = ismin;
  754. work[i__1].r = 1.f, work[i__1].i = 0.f;
  755. i__1 = ismax;
  756. work[i__1].r = 1.f, work[i__1].i = 0.f;
  757. smax = c_abs(&a[a_dim1 + 1]);
  758. smin = smax;
  759. if (c_abs(&a[a_dim1 + 1]) == 0.f) {
  760. *rank = 0;
  761. i__1 = f2cmax(*m,*n);
  762. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  763. goto L70;
  764. } else {
  765. *rank = 1;
  766. }
  767. L10:
  768. if (*rank < mn) {
  769. i__ = *rank + 1;
  770. claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
  771. i__ + i__ * a_dim1], &sminpr, &s1, &c1);
  772. claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
  773. i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
  774. if (smaxpr * *rcond <= sminpr) {
  775. i__1 = *rank;
  776. for (i__ = 1; i__ <= i__1; ++i__) {
  777. i__2 = ismin + i__ - 1;
  778. i__3 = ismin + i__ - 1;
  779. q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i =
  780. s1.r * work[i__3].i + s1.i * work[i__3].r;
  781. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  782. i__2 = ismax + i__ - 1;
  783. i__3 = ismax + i__ - 1;
  784. q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i =
  785. s2.r * work[i__3].i + s2.i * work[i__3].r;
  786. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  787. /* L20: */
  788. }
  789. i__1 = ismin + *rank;
  790. work[i__1].r = c1.r, work[i__1].i = c1.i;
  791. i__1 = ismax + *rank;
  792. work[i__1].r = c2.r, work[i__1].i = c2.i;
  793. smin = sminpr;
  794. smax = smaxpr;
  795. ++(*rank);
  796. goto L10;
  797. }
  798. }
  799. /* complex workspace: 3*MN. */
  800. /* Logically partition R = [ R11 R12 ] */
  801. /* [ 0 R22 ] */
  802. /* where R11 = R(1:RANK,1:RANK) */
  803. /* [R11,R12] = [ T11, 0 ] * Y */
  804. if (*rank < *n) {
  805. i__1 = *lwork - (mn << 1);
  806. ctzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) +
  807. 1], &i__1, info);
  808. }
  809. /* complex workspace: 2*MN. */
  810. /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
  811. /* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */
  812. i__1 = *lwork - (mn << 1);
  813. cunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
  814. work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
  815. /* Computing MAX */
  816. i__1 = (mn << 1) + 1;
  817. r__1 = wsize, r__2 = (mn << 1) + work[i__1].r;
  818. wsize = f2cmax(r__1,r__2);
  819. /* complex workspace: 2*MN+NB*NRHS. */
  820. /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
  821. ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
  822. a_offset], lda, &b[b_offset], ldb);
  823. i__1 = *nrhs;
  824. for (j = 1; j <= i__1; ++j) {
  825. i__2 = *n;
  826. for (i__ = *rank + 1; i__ <= i__2; ++i__) {
  827. i__3 = i__ + j * b_dim1;
  828. b[i__3].r = 0.f, b[i__3].i = 0.f;
  829. /* L30: */
  830. }
  831. /* L40: */
  832. }
  833. /* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */
  834. if (*rank < *n) {
  835. i__1 = *n - *rank;
  836. i__2 = *lwork - (mn << 1);
  837. cunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[
  838. a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn <<
  839. 1) + 1], &i__2, info);
  840. }
  841. /* complex workspace: 2*MN+NRHS. */
  842. /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
  843. i__1 = *nrhs;
  844. for (j = 1; j <= i__1; ++j) {
  845. i__2 = *n;
  846. for (i__ = 1; i__ <= i__2; ++i__) {
  847. i__3 = jpvt[i__];
  848. i__4 = i__ + j * b_dim1;
  849. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  850. /* L50: */
  851. }
  852. ccopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
  853. /* L60: */
  854. }
  855. /* complex workspace: N. */
  856. /* Undo scaling */
  857. if (iascl == 1) {
  858. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  859. info);
  860. clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
  861. lda, info);
  862. } else if (iascl == 2) {
  863. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  864. info);
  865. clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
  866. lda, info);
  867. }
  868. if (ibscl == 1) {
  869. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  870. info);
  871. } else if (ibscl == 2) {
  872. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  873. info);
  874. }
  875. L70:
  876. q__1.r = (real) lwkopt, q__1.i = 0.f;
  877. work[1].r = q__1.r, work[1].i = q__1.i;
  878. return 0;
  879. /* End of CGELSY */
  880. } /* cgelsy_ */