You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelss.c 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static complex c_b1 = {0.f,0.f};
  381. static complex c_b2 = {1.f,0.f};
  382. static integer c__6 = 6;
  383. static integer c_n1 = -1;
  384. static integer c__1 = 1;
  385. static integer c__0 = 0;
  386. static real c_b59 = 0.f;
  387. /* > \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  388. /* =========== DOCUMENTATION =========== */
  389. /* Online html documentation available at */
  390. /* http://www.netlib.org/lapack/explore-html/ */
  391. /* > \htmlonly */
  392. /* > Download CGELSS + dependencies */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.
  394. f"> */
  395. /* > [TGZ]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.
  397. f"> */
  398. /* > [ZIP]</a> */
  399. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.
  400. f"> */
  401. /* > [TXT]</a> */
  402. /* > \endhtmlonly */
  403. /* Definition: */
  404. /* =========== */
  405. /* SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  406. /* WORK, LWORK, RWORK, INFO ) */
  407. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  408. /* REAL RCOND */
  409. /* REAL RWORK( * ), S( * ) */
  410. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  411. /* > \par Purpose: */
  412. /* ============= */
  413. /* > */
  414. /* > \verbatim */
  415. /* > */
  416. /* > CGELSS computes the minimum norm solution to a complex linear */
  417. /* > least squares problem: */
  418. /* > */
  419. /* > Minimize 2-norm(| b - A*x |). */
  420. /* > */
  421. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  422. /* > matrix which may be rank-deficient. */
  423. /* > */
  424. /* > Several right hand side vectors b and solution vectors x can be */
  425. /* > handled in a single call; they are stored as the columns of the */
  426. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  427. /* > X. */
  428. /* > */
  429. /* > The effective rank of A is determined by treating as zero those */
  430. /* > singular values which are less than RCOND times the largest singular */
  431. /* > value. */
  432. /* > \endverbatim */
  433. /* Arguments: */
  434. /* ========== */
  435. /* > \param[in] M */
  436. /* > \verbatim */
  437. /* > M is INTEGER */
  438. /* > The number of rows of the matrix A. M >= 0. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in] N */
  442. /* > \verbatim */
  443. /* > N is INTEGER */
  444. /* > The number of columns of the matrix A. N >= 0. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in] NRHS */
  448. /* > \verbatim */
  449. /* > NRHS is INTEGER */
  450. /* > The number of right hand sides, i.e., the number of columns */
  451. /* > of the matrices B and X. NRHS >= 0. */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in,out] A */
  455. /* > \verbatim */
  456. /* > A is COMPLEX array, dimension (LDA,N) */
  457. /* > On entry, the M-by-N matrix A. */
  458. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  459. /* > its right singular vectors, stored rowwise. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] LDA */
  463. /* > \verbatim */
  464. /* > LDA is INTEGER */
  465. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in,out] B */
  469. /* > \verbatim */
  470. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  471. /* > On entry, the M-by-NRHS right hand side matrix B. */
  472. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  473. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  474. /* > the solution in the i-th column is given by the sum of */
  475. /* > squares of the modulus of elements n+1:m in that column. */
  476. /* > \endverbatim */
  477. /* > */
  478. /* > \param[in] LDB */
  479. /* > \verbatim */
  480. /* > LDB is INTEGER */
  481. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  482. /* > \endverbatim */
  483. /* > */
  484. /* > \param[out] S */
  485. /* > \verbatim */
  486. /* > S is REAL array, dimension (f2cmin(M,N)) */
  487. /* > The singular values of A in decreasing order. */
  488. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[in] RCOND */
  492. /* > \verbatim */
  493. /* > RCOND is REAL */
  494. /* > RCOND is used to determine the effective rank of A. */
  495. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  496. /* > If RCOND < 0, machine precision is used instead. */
  497. /* > \endverbatim */
  498. /* > */
  499. /* > \param[out] RANK */
  500. /* > \verbatim */
  501. /* > RANK is INTEGER */
  502. /* > The effective rank of A, i.e., the number of singular values */
  503. /* > which are greater than RCOND*S(1). */
  504. /* > \endverbatim */
  505. /* > */
  506. /* > \param[out] WORK */
  507. /* > \verbatim */
  508. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  509. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[in] LWORK */
  513. /* > \verbatim */
  514. /* > LWORK is INTEGER */
  515. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  516. /* > LWORK >= 2*f2cmin(M,N) + f2cmax(M,N,NRHS) */
  517. /* > For good performance, LWORK should generally be larger. */
  518. /* > */
  519. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  520. /* > only calculates the optimal size of the WORK array, returns */
  521. /* > this value as the first entry of the WORK array, and no error */
  522. /* > message related to LWORK is issued by XERBLA. */
  523. /* > \endverbatim */
  524. /* > */
  525. /* > \param[out] RWORK */
  526. /* > \verbatim */
  527. /* > RWORK is REAL array, dimension (5*f2cmin(M,N)) */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[out] INFO */
  531. /* > \verbatim */
  532. /* > INFO is INTEGER */
  533. /* > = 0: successful exit */
  534. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  535. /* > > 0: the algorithm for computing the SVD failed to converge; */
  536. /* > if INFO = i, i off-diagonal elements of an intermediate */
  537. /* > bidiagonal form did not converge to zero. */
  538. /* > \endverbatim */
  539. /* Authors: */
  540. /* ======== */
  541. /* > \author Univ. of Tennessee */
  542. /* > \author Univ. of California Berkeley */
  543. /* > \author Univ. of Colorado Denver */
  544. /* > \author NAG Ltd. */
  545. /* > \date June 2016 */
  546. /* > \ingroup complexGEsolve */
  547. /* ===================================================================== */
  548. /* Subroutine */ int cgelss_(integer *m, integer *n, integer *nrhs, complex *
  549. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  550. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  551. info)
  552. {
  553. /* System generated locals */
  554. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  555. real r__1;
  556. /* Local variables */
  557. real anrm, bnrm;
  558. integer itau, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__,
  559. lwork_cungbr__, lwork_cunmbr__, i__, lwork_cunmlq__,
  560. lwork_cunmqr__;
  561. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  562. integer *, complex *, complex *, integer *, complex *, integer *,
  563. complex *, complex *, integer *);
  564. integer iascl, ibscl;
  565. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  566. , complex *, integer *, complex *, integer *, complex *, complex *
  567. , integer *);
  568. integer chunk;
  569. real sfmin;
  570. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  571. complex *, integer *);
  572. integer minmn, maxmn, itaup, itauq, mnthr, iwork, bl, ie, il;
  573. extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
  574. integer *, real *, real *, complex *, complex *, complex *,
  575. integer *, integer *), slabad_(real *, real *);
  576. extern real clange_(char *, integer *, integer *, complex *, integer *,
  577. real *);
  578. integer mm;
  579. extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
  580. integer *, complex *, complex *, integer *, integer *), clascl_(
  581. char *, integer *, integer *, real *, real *, integer *, integer *
  582. , complex *, integer *, integer *), cgeqrf_(integer *,
  583. integer *, complex *, integer *, complex *, complex *, integer *,
  584. integer *);
  585. extern real slamch_(char *);
  586. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  587. *, integer *, complex *, integer *), claset_(char *,
  588. integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen), cbdsqr_(char *,
  589. integer *, integer *, integer *, integer *, real *, real *,
  590. complex *, integer *, complex *, integer *, complex *, integer *,
  591. real *, integer *);
  592. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  593. integer *, integer *, ftnlen, ftnlen);
  594. real bignum;
  595. extern /* Subroutine */ int cungbr_(char *, integer *, integer *, integer
  596. *, complex *, integer *, complex *, complex *, integer *, integer
  597. *), slascl_(char *, integer *, integer *, real *, real *,
  598. integer *, integer *, real *, integer *, integer *),
  599. cunmbr_(char *, char *, char *, integer *, integer *, integer *,
  600. complex *, integer *, complex *, complex *, integer *, complex *,
  601. integer *, integer *), csrscl_(integer *,
  602. real *, complex *, integer *), slaset_(char *, integer *, integer
  603. *, real *, real *, real *, integer *), cunmlq_(char *,
  604. char *, integer *, integer *, integer *, complex *, integer *,
  605. complex *, complex *, integer *, complex *, integer *, integer *);
  606. integer ldwork;
  607. extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
  608. integer *, complex *, integer *, complex *, complex *, integer *,
  609. complex *, integer *, integer *);
  610. integer minwrk, maxwrk;
  611. real smlnum;
  612. integer irwork;
  613. logical lquery;
  614. complex dum[1];
  615. real eps, thr;
  616. /* -- LAPACK driver routine (version 3.7.0) -- */
  617. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  618. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  619. /* June 2016 */
  620. /* ===================================================================== */
  621. /* Test the input arguments */
  622. /* Parameter adjustments */
  623. a_dim1 = *lda;
  624. a_offset = 1 + a_dim1 * 1;
  625. a -= a_offset;
  626. b_dim1 = *ldb;
  627. b_offset = 1 + b_dim1 * 1;
  628. b -= b_offset;
  629. --s;
  630. --work;
  631. --rwork;
  632. /* Function Body */
  633. *info = 0;
  634. minmn = f2cmin(*m,*n);
  635. maxmn = f2cmax(*m,*n);
  636. lquery = *lwork == -1;
  637. if (*m < 0) {
  638. *info = -1;
  639. } else if (*n < 0) {
  640. *info = -2;
  641. } else if (*nrhs < 0) {
  642. *info = -3;
  643. } else if (*lda < f2cmax(1,*m)) {
  644. *info = -5;
  645. } else if (*ldb < f2cmax(1,maxmn)) {
  646. *info = -7;
  647. }
  648. /* Compute workspace */
  649. /* (Note: Comments in the code beginning "Workspace:" describe the */
  650. /* minimal amount of workspace needed at that point in the code, */
  651. /* as well as the preferred amount for good performance. */
  652. /* CWorkspace refers to complex workspace, and RWorkspace refers */
  653. /* to real workspace. NB refers to the optimal block size for the */
  654. /* immediately following subroutine, as returned by ILAENV.) */
  655. if (*info == 0) {
  656. minwrk = 1;
  657. maxwrk = 1;
  658. if (minmn > 0) {
  659. mm = *m;
  660. mnthr = ilaenv_(&c__6, "CGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  661. 6, (ftnlen)1);
  662. if (*m >= *n && *m >= mnthr) {
  663. /* Path 1a - overdetermined, with many more rows than */
  664. /* columns */
  665. /* Compute space needed for CGEQRF */
  666. cgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  667. lwork_cgeqrf__ = dum[0].r;
  668. /* Compute space needed for CUNMQR */
  669. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[
  670. b_offset], ldb, dum, &c_n1, info);
  671. lwork_cunmqr__ = dum[0].r;
  672. mm = *n;
  673. /* Computing MAX */
  674. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF",
  675. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  676. maxwrk = f2cmax(i__1,i__2);
  677. /* Computing MAX */
  678. i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "CUNMQR",
  679. "LC", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  680. maxwrk = f2cmax(i__1,i__2);
  681. }
  682. if (*m >= *n) {
  683. /* Path 1 - overdetermined or exactly determined */
  684. /* Compute space needed for CGEBRD */
  685. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  686. dum, &c_n1, info);
  687. lwork_cgebrd__ = dum[0].r;
  688. /* Compute space needed for CUNMBR */
  689. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, &
  690. b[b_offset], ldb, dum, &c_n1, info);
  691. lwork_cunmbr__ = dum[0].r;
  692. /* Compute space needed for CUNGBR */
  693. cungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  694. info);
  695. lwork_cungbr__ = dum[0].r;
  696. /* Compute total workspace needed */
  697. /* Computing MAX */
  698. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cgebrd__;
  699. maxwrk = f2cmax(i__1,i__2);
  700. /* Computing MAX */
  701. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cunmbr__;
  702. maxwrk = f2cmax(i__1,i__2);
  703. /* Computing MAX */
  704. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cungbr__;
  705. maxwrk = f2cmax(i__1,i__2);
  706. /* Computing MAX */
  707. i__1 = maxwrk, i__2 = *n * *nrhs;
  708. maxwrk = f2cmax(i__1,i__2);
  709. minwrk = (*n << 1) + f2cmax(*nrhs,*m);
  710. }
  711. if (*n > *m) {
  712. minwrk = (*m << 1) + f2cmax(*nrhs,*n);
  713. if (*n >= mnthr) {
  714. /* Path 2a - underdetermined, with many more columns */
  715. /* than rows */
  716. /* Compute space needed for CGELQF */
  717. cgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  718. lwork_cgelqf__ = dum[0].r;
  719. /* Compute space needed for CGEBRD */
  720. cgebrd_(m, m, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  721. dum, &c_n1, info);
  722. lwork_cgebrd__ = dum[0].r;
  723. /* Compute space needed for CUNMBR */
  724. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum,
  725. &b[b_offset], ldb, dum, &c_n1, info);
  726. lwork_cunmbr__ = dum[0].r;
  727. /* Compute space needed for CUNGBR */
  728. cungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  729. info);
  730. lwork_cungbr__ = dum[0].r;
  731. /* Compute space needed for CUNMLQ */
  732. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[
  733. b_offset], ldb, dum, &c_n1, info);
  734. lwork_cunmlq__ = dum[0].r;
  735. /* Compute total workspace needed */
  736. maxwrk = *m + lwork_cgelqf__;
  737. /* Computing MAX */
  738. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cgebrd__;
  739. maxwrk = f2cmax(i__1,i__2);
  740. /* Computing MAX */
  741. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cunmbr__;
  742. maxwrk = f2cmax(i__1,i__2);
  743. /* Computing MAX */
  744. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cungbr__;
  745. maxwrk = f2cmax(i__1,i__2);
  746. if (*nrhs > 1) {
  747. /* Computing MAX */
  748. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  749. maxwrk = f2cmax(i__1,i__2);
  750. } else {
  751. /* Computing MAX */
  752. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  753. maxwrk = f2cmax(i__1,i__2);
  754. }
  755. /* Computing MAX */
  756. i__1 = maxwrk, i__2 = *m + lwork_cunmlq__;
  757. maxwrk = f2cmax(i__1,i__2);
  758. } else {
  759. /* Path 2 - underdetermined */
  760. /* Compute space needed for CGEBRD */
  761. cgebrd_(m, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  762. dum, &c_n1, info);
  763. lwork_cgebrd__ = dum[0].r;
  764. /* Compute space needed for CUNMBR */
  765. cunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum,
  766. &b[b_offset], ldb, dum, &c_n1, info);
  767. lwork_cunmbr__ = dum[0].r;
  768. /* Compute space needed for CUNGBR */
  769. cungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  770. info);
  771. lwork_cungbr__ = dum[0].r;
  772. maxwrk = (*m << 1) + lwork_cgebrd__;
  773. /* Computing MAX */
  774. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cunmbr__;
  775. maxwrk = f2cmax(i__1,i__2);
  776. /* Computing MAX */
  777. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cungbr__;
  778. maxwrk = f2cmax(i__1,i__2);
  779. /* Computing MAX */
  780. i__1 = maxwrk, i__2 = *n * *nrhs;
  781. maxwrk = f2cmax(i__1,i__2);
  782. }
  783. }
  784. maxwrk = f2cmax(minwrk,maxwrk);
  785. }
  786. work[1].r = (real) maxwrk, work[1].i = 0.f;
  787. if (*lwork < minwrk && ! lquery) {
  788. *info = -12;
  789. }
  790. }
  791. if (*info != 0) {
  792. i__1 = -(*info);
  793. xerbla_("CGELSS", &i__1, (ftnlen)6);
  794. return 0;
  795. } else if (lquery) {
  796. return 0;
  797. }
  798. /* Quick return if possible */
  799. if (*m == 0 || *n == 0) {
  800. *rank = 0;
  801. return 0;
  802. }
  803. /* Get machine parameters */
  804. eps = slamch_("P");
  805. sfmin = slamch_("S");
  806. smlnum = sfmin / eps;
  807. bignum = 1.f / smlnum;
  808. slabad_(&smlnum, &bignum);
  809. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  810. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  811. iascl = 0;
  812. if (anrm > 0.f && anrm < smlnum) {
  813. /* Scale matrix norm up to SMLNUM */
  814. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  815. info);
  816. iascl = 1;
  817. } else if (anrm > bignum) {
  818. /* Scale matrix norm down to BIGNUM */
  819. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  820. info);
  821. iascl = 2;
  822. } else if (anrm == 0.f) {
  823. /* Matrix all zero. Return zero solution. */
  824. i__1 = f2cmax(*m,*n);
  825. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  826. slaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn);
  827. *rank = 0;
  828. goto L70;
  829. }
  830. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  831. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  832. ibscl = 0;
  833. if (bnrm > 0.f && bnrm < smlnum) {
  834. /* Scale matrix norm up to SMLNUM */
  835. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  836. info);
  837. ibscl = 1;
  838. } else if (bnrm > bignum) {
  839. /* Scale matrix norm down to BIGNUM */
  840. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  841. info);
  842. ibscl = 2;
  843. }
  844. /* Overdetermined case */
  845. if (*m >= *n) {
  846. /* Path 1 - overdetermined or exactly determined */
  847. mm = *m;
  848. if (*m >= mnthr) {
  849. /* Path 1a - overdetermined, with many more rows than columns */
  850. mm = *n;
  851. itau = 1;
  852. iwork = itau + *n;
  853. /* Compute A=Q*R */
  854. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  855. /* (RWorkspace: none) */
  856. i__1 = *lwork - iwork + 1;
  857. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  858. info);
  859. /* Multiply B by transpose(Q) */
  860. /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
  861. /* (RWorkspace: none) */
  862. i__1 = *lwork - iwork + 1;
  863. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  864. b_offset], ldb, &work[iwork], &i__1, info);
  865. /* Zero out below R */
  866. if (*n > 1) {
  867. i__1 = *n - 1;
  868. i__2 = *n - 1;
  869. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  870. }
  871. }
  872. ie = 1;
  873. itauq = 1;
  874. itaup = itauq + *n;
  875. iwork = itaup + *n;
  876. /* Bidiagonalize R in A */
  877. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  878. /* (RWorkspace: need N) */
  879. i__1 = *lwork - iwork + 1;
  880. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  881. work[itaup], &work[iwork], &i__1, info);
  882. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  883. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  884. /* (RWorkspace: none) */
  885. i__1 = *lwork - iwork + 1;
  886. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  887. &b[b_offset], ldb, &work[iwork], &i__1, info);
  888. /* Generate right bidiagonalizing vectors of R in A */
  889. /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  890. /* (RWorkspace: none) */
  891. i__1 = *lwork - iwork + 1;
  892. cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  893. i__1, info);
  894. irwork = ie + *n;
  895. /* Perform bidiagonal QR iteration */
  896. /* multiply B by transpose of left singular vectors */
  897. /* compute right singular vectors in A */
  898. /* (CWorkspace: none) */
  899. /* (RWorkspace: need BDSPAC) */
  900. cbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda,
  901. dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  902. if (*info != 0) {
  903. goto L70;
  904. }
  905. /* Multiply B by reciprocals of singular values */
  906. /* Computing MAX */
  907. r__1 = *rcond * s[1];
  908. thr = f2cmax(r__1,sfmin);
  909. if (*rcond < 0.f) {
  910. /* Computing MAX */
  911. r__1 = eps * s[1];
  912. thr = f2cmax(r__1,sfmin);
  913. }
  914. *rank = 0;
  915. i__1 = *n;
  916. for (i__ = 1; i__ <= i__1; ++i__) {
  917. if (s[i__] > thr) {
  918. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  919. ++(*rank);
  920. } else {
  921. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  922. }
  923. /* L10: */
  924. }
  925. /* Multiply B by right singular vectors */
  926. /* (CWorkspace: need N, prefer N*NRHS) */
  927. /* (RWorkspace: none) */
  928. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  929. cgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[
  930. b_offset], ldb, &c_b1, &work[1], ldb);
  931. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  932. ;
  933. } else if (*nrhs > 1) {
  934. chunk = *lwork / *n;
  935. i__1 = *nrhs;
  936. i__2 = chunk;
  937. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  938. /* Computing MIN */
  939. i__3 = *nrhs - i__ + 1;
  940. bl = f2cmin(i__3,chunk);
  941. cgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ *
  942. b_dim1 + 1], ldb, &c_b1, &work[1], n);
  943. clacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  944. /* L20: */
  945. }
  946. } else {
  947. cgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, &
  948. c_b1, &work[1], &c__1);
  949. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  950. }
  951. } else /* if(complicated condition) */ {
  952. /* Computing MAX */
  953. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  954. if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + f2cmax(i__2,i__1)) {
  955. /* Underdetermined case, M much less than N */
  956. /* Path 2a - underdetermined, with many more columns than rows */
  957. /* and sufficient workspace for an efficient algorithm */
  958. ldwork = *m;
  959. /* Computing MAX */
  960. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  961. if (*lwork >= *m * 3 + *m * *lda + f2cmax(i__2,i__1)) {
  962. ldwork = *lda;
  963. }
  964. itau = 1;
  965. iwork = *m + 1;
  966. /* Compute A=L*Q */
  967. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  968. /* (RWorkspace: none) */
  969. i__2 = *lwork - iwork + 1;
  970. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  971. info);
  972. il = iwork;
  973. /* Copy L to WORK(IL), zeroing out above it */
  974. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  975. i__2 = *m - 1;
  976. i__1 = *m - 1;
  977. claset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], &
  978. ldwork);
  979. ie = 1;
  980. itauq = il + ldwork * *m;
  981. itaup = itauq + *m;
  982. iwork = itaup + *m;
  983. /* Bidiagonalize L in WORK(IL) */
  984. /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  985. /* (RWorkspace: need M) */
  986. i__2 = *lwork - iwork + 1;
  987. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  988. &work[itaup], &work[iwork], &i__2, info);
  989. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  990. /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
  991. /* (RWorkspace: none) */
  992. i__2 = *lwork - iwork + 1;
  993. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  994. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  995. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  996. /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
  997. /* (RWorkspace: none) */
  998. i__2 = *lwork - iwork + 1;
  999. cungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  1000. iwork], &i__2, info);
  1001. irwork = ie + *m;
  1002. /* Perform bidiagonal QR iteration, computing right singular */
  1003. /* vectors of L in WORK(IL) and multiplying B by transpose of */
  1004. /* left singular vectors */
  1005. /* (CWorkspace: need M*M) */
  1006. /* (RWorkspace: need BDSPAC) */
  1007. cbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], &
  1008. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[
  1009. irwork], info);
  1010. if (*info != 0) {
  1011. goto L70;
  1012. }
  1013. /* Multiply B by reciprocals of singular values */
  1014. /* Computing MAX */
  1015. r__1 = *rcond * s[1];
  1016. thr = f2cmax(r__1,sfmin);
  1017. if (*rcond < 0.f) {
  1018. /* Computing MAX */
  1019. r__1 = eps * s[1];
  1020. thr = f2cmax(r__1,sfmin);
  1021. }
  1022. *rank = 0;
  1023. i__2 = *m;
  1024. for (i__ = 1; i__ <= i__2; ++i__) {
  1025. if (s[i__] > thr) {
  1026. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1027. ++(*rank);
  1028. } else {
  1029. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1030. ldb);
  1031. }
  1032. /* L30: */
  1033. }
  1034. iwork = il + *m * ldwork;
  1035. /* Multiply B by right singular vectors of L in WORK(IL) */
  1036. /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  1037. /* (RWorkspace: none) */
  1038. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  1039. cgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[
  1040. b_offset], ldb, &c_b1, &work[iwork], ldb);
  1041. clacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  1042. } else if (*nrhs > 1) {
  1043. chunk = (*lwork - iwork + 1) / *m;
  1044. i__2 = *nrhs;
  1045. i__1 = chunk;
  1046. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1047. i__1) {
  1048. /* Computing MIN */
  1049. i__3 = *nrhs - i__ + 1;
  1050. bl = f2cmin(i__3,chunk);
  1051. cgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[
  1052. i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
  1053. clacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  1054. , ldb);
  1055. /* L40: */
  1056. }
  1057. } else {
  1058. cgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], &
  1059. c__1, &c_b1, &work[iwork], &c__1);
  1060. ccopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  1061. }
  1062. /* Zero out below first M rows of B */
  1063. i__1 = *n - *m;
  1064. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1065. iwork = itau + *m;
  1066. /* Multiply transpose(Q) by B */
  1067. /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
  1068. /* (RWorkspace: none) */
  1069. i__1 = *lwork - iwork + 1;
  1070. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1071. b_offset], ldb, &work[iwork], &i__1, info);
  1072. } else {
  1073. /* Path 2 - remaining underdetermined cases */
  1074. ie = 1;
  1075. itauq = 1;
  1076. itaup = itauq + *m;
  1077. iwork = itaup + *m;
  1078. /* Bidiagonalize A */
  1079. /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
  1080. /* (RWorkspace: need N) */
  1081. i__1 = *lwork - iwork + 1;
  1082. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1083. &work[itaup], &work[iwork], &i__1, info);
  1084. /* Multiply B by transpose of left bidiagonalizing vectors */
  1085. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1086. /* (RWorkspace: none) */
  1087. i__1 = *lwork - iwork + 1;
  1088. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1089. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  1090. /* Generate right bidiagonalizing vectors in A */
  1091. /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
  1092. /* (RWorkspace: none) */
  1093. i__1 = *lwork - iwork + 1;
  1094. cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  1095. iwork], &i__1, info);
  1096. irwork = ie + *m;
  1097. /* Perform bidiagonal QR iteration, */
  1098. /* computing right singular vectors of A in A and */
  1099. /* multiplying B by transpose of left singular vectors */
  1100. /* (CWorkspace: none) */
  1101. /* (RWorkspace: need BDSPAC) */
  1102. cbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset],
  1103. lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1104. if (*info != 0) {
  1105. goto L70;
  1106. }
  1107. /* Multiply B by reciprocals of singular values */
  1108. /* Computing MAX */
  1109. r__1 = *rcond * s[1];
  1110. thr = f2cmax(r__1,sfmin);
  1111. if (*rcond < 0.f) {
  1112. /* Computing MAX */
  1113. r__1 = eps * s[1];
  1114. thr = f2cmax(r__1,sfmin);
  1115. }
  1116. *rank = 0;
  1117. i__1 = *m;
  1118. for (i__ = 1; i__ <= i__1; ++i__) {
  1119. if (s[i__] > thr) {
  1120. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1121. ++(*rank);
  1122. } else {
  1123. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1124. ldb);
  1125. }
  1126. /* L50: */
  1127. }
  1128. /* Multiply B by right singular vectors of A */
  1129. /* (CWorkspace: need N, prefer N*NRHS) */
  1130. /* (RWorkspace: none) */
  1131. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1132. cgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[
  1133. b_offset], ldb, &c_b1, &work[1], ldb);
  1134. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  1135. } else if (*nrhs > 1) {
  1136. chunk = *lwork / *n;
  1137. i__1 = *nrhs;
  1138. i__2 = chunk;
  1139. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1140. i__2) {
  1141. /* Computing MIN */
  1142. i__3 = *nrhs - i__ + 1;
  1143. bl = f2cmin(i__3,chunk);
  1144. cgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[
  1145. i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1146. clacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  1147. ldb);
  1148. /* L60: */
  1149. }
  1150. } else {
  1151. cgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], &
  1152. c__1, &c_b1, &work[1], &c__1);
  1153. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1154. }
  1155. }
  1156. }
  1157. /* Undo scaling */
  1158. if (iascl == 1) {
  1159. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1160. info);
  1161. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1162. minmn, info);
  1163. } else if (iascl == 2) {
  1164. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1165. info);
  1166. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1167. minmn, info);
  1168. }
  1169. if (ibscl == 1) {
  1170. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1171. info);
  1172. } else if (ibscl == 2) {
  1173. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1174. info);
  1175. }
  1176. L70:
  1177. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1178. return 0;
  1179. /* End of CGELSS */
  1180. } /* cgelss_ */