You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeesx.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c__0 = 0;
  382. static integer c_n1 = -1;
  383. /* > \brief <b> CGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  384. for GE matrices</b> */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download CGEESX + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeesx.
  391. f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeesx.
  394. f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeesx.
  397. f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W, */
  403. /* VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, */
  404. /* BWORK, INFO ) */
  405. /* CHARACTER JOBVS, SENSE, SORT */
  406. /* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
  407. /* REAL RCONDE, RCONDV */
  408. /* LOGICAL BWORK( * ) */
  409. /* REAL RWORK( * ) */
  410. /* COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) */
  411. /* LOGICAL SELECT */
  412. /* EXTERNAL SELECT */
  413. /* > \par Purpose: */
  414. /* ============= */
  415. /* > */
  416. /* > \verbatim */
  417. /* > */
  418. /* > CGEESX computes for an N-by-N complex nonsymmetric matrix A, the */
  419. /* > eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
  420. /* > vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
  421. /* > */
  422. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  423. /* > Schur form so that selected eigenvalues are at the top left; */
  424. /* > computes a reciprocal condition number for the average of the */
  425. /* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
  426. /* > number for the right invariant subspace corresponding to the */
  427. /* > selected eigenvalues (RCONDV). The leading columns of Z form an */
  428. /* > orthonormal basis for this invariant subspace. */
  429. /* > */
  430. /* > For further explanation of the reciprocal condition numbers RCONDE */
  431. /* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
  432. /* > these quantities are called s and sep respectively). */
  433. /* > */
  434. /* > A complex matrix is in Schur form if it is upper triangular. */
  435. /* > \endverbatim */
  436. /* Arguments: */
  437. /* ========== */
  438. /* > \param[in] JOBVS */
  439. /* > \verbatim */
  440. /* > JOBVS is CHARACTER*1 */
  441. /* > = 'N': Schur vectors are not computed; */
  442. /* > = 'V': Schur vectors are computed. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] SORT */
  446. /* > \verbatim */
  447. /* > SORT is CHARACTER*1 */
  448. /* > Specifies whether or not to order the eigenvalues on the */
  449. /* > diagonal of the Schur form. */
  450. /* > = 'N': Eigenvalues are not ordered; */
  451. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in] SELECT */
  455. /* > \verbatim */
  456. /* > SELECT is a LOGICAL FUNCTION of one COMPLEX argument */
  457. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  458. /* > If SORT = 'S', SELECT is used to select eigenvalues to order */
  459. /* > to the top left of the Schur form. */
  460. /* > If SORT = 'N', SELECT is not referenced. */
  461. /* > An eigenvalue W(j) is selected if SELECT(W(j)) is true. */
  462. /* > \endverbatim */
  463. /* > */
  464. /* > \param[in] SENSE */
  465. /* > \verbatim */
  466. /* > SENSE is CHARACTER*1 */
  467. /* > Determines which reciprocal condition numbers are computed. */
  468. /* > = 'N': None are computed; */
  469. /* > = 'E': Computed for average of selected eigenvalues only; */
  470. /* > = 'V': Computed for selected right invariant subspace only; */
  471. /* > = 'B': Computed for both. */
  472. /* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
  473. /* > \endverbatim */
  474. /* > */
  475. /* > \param[in] N */
  476. /* > \verbatim */
  477. /* > N is INTEGER */
  478. /* > The order of the matrix A. N >= 0. */
  479. /* > \endverbatim */
  480. /* > */
  481. /* > \param[in,out] A */
  482. /* > \verbatim */
  483. /* > A is COMPLEX array, dimension (LDA, N) */
  484. /* > On entry, the N-by-N matrix A. */
  485. /* > On exit, A is overwritten by its Schur form T. */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in] LDA */
  489. /* > \verbatim */
  490. /* > LDA is INTEGER */
  491. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  492. /* > \endverbatim */
  493. /* > */
  494. /* > \param[out] SDIM */
  495. /* > \verbatim */
  496. /* > SDIM is INTEGER */
  497. /* > If SORT = 'N', SDIM = 0. */
  498. /* > If SORT = 'S', SDIM = number of eigenvalues for which */
  499. /* > SELECT is true. */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[out] W */
  503. /* > \verbatim */
  504. /* > W is COMPLEX array, dimension (N) */
  505. /* > W contains the computed eigenvalues, in the same order */
  506. /* > that they appear on the diagonal of the output Schur form T. */
  507. /* > \endverbatim */
  508. /* > */
  509. /* > \param[out] VS */
  510. /* > \verbatim */
  511. /* > VS is COMPLEX array, dimension (LDVS,N) */
  512. /* > If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
  513. /* > vectors. */
  514. /* > If JOBVS = 'N', VS is not referenced. */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \param[in] LDVS */
  518. /* > \verbatim */
  519. /* > LDVS is INTEGER */
  520. /* > The leading dimension of the array VS. LDVS >= 1, and if */
  521. /* > JOBVS = 'V', LDVS >= N. */
  522. /* > \endverbatim */
  523. /* > */
  524. /* > \param[out] RCONDE */
  525. /* > \verbatim */
  526. /* > RCONDE is REAL */
  527. /* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
  528. /* > condition number for the average of the selected eigenvalues. */
  529. /* > Not referenced if SENSE = 'N' or 'V'. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[out] RCONDV */
  533. /* > \verbatim */
  534. /* > RCONDV is REAL */
  535. /* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
  536. /* > condition number for the selected right invariant subspace. */
  537. /* > Not referenced if SENSE = 'N' or 'E'. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[out] WORK */
  541. /* > \verbatim */
  542. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  543. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] LWORK */
  547. /* > \verbatim */
  548. /* > LWORK is INTEGER */
  549. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  550. /* > Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */
  551. /* > where SDIM is the number of selected eigenvalues computed by */
  552. /* > this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */
  553. /* > that an error is only returned if LWORK < f2cmax(1,2*N), but if */
  554. /* > SENSE = 'E' or 'V' or 'B' this may not be large enough. */
  555. /* > For good performance, LWORK must generally be larger. */
  556. /* > */
  557. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  558. /* > only calculates upper bound on the optimal size of the */
  559. /* > array WORK, returns this value as the first entry of the WORK */
  560. /* > array, and no error message related to LWORK is issued by */
  561. /* > XERBLA. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[out] RWORK */
  565. /* > \verbatim */
  566. /* > RWORK is REAL array, dimension (N) */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] BWORK */
  570. /* > \verbatim */
  571. /* > BWORK is LOGICAL array, dimension (N) */
  572. /* > Not referenced if SORT = 'N'. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] INFO */
  576. /* > \verbatim */
  577. /* > INFO is INTEGER */
  578. /* > = 0: successful exit */
  579. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  580. /* > > 0: if INFO = i, and i is */
  581. /* > <= N: the QR algorithm failed to compute all the */
  582. /* > eigenvalues; elements 1:ILO-1 and i+1:N of W */
  583. /* > contain those eigenvalues which have converged; if */
  584. /* > JOBVS = 'V', VS contains the transformation which */
  585. /* > reduces A to its partially converged Schur form. */
  586. /* > = N+1: the eigenvalues could not be reordered because some */
  587. /* > eigenvalues were too close to separate (the problem */
  588. /* > is very ill-conditioned); */
  589. /* > = N+2: after reordering, roundoff changed values of some */
  590. /* > complex eigenvalues so that leading eigenvalues in */
  591. /* > the Schur form no longer satisfy SELECT=.TRUE. This */
  592. /* > could also be caused by underflow due to scaling. */
  593. /* > \endverbatim */
  594. /* Authors: */
  595. /* ======== */
  596. /* > \author Univ. of Tennessee */
  597. /* > \author Univ. of California Berkeley */
  598. /* > \author Univ. of Colorado Denver */
  599. /* > \author NAG Ltd. */
  600. /* > \date June 2016 */
  601. /* > \ingroup complexGEeigen */
  602. /* ===================================================================== */
  603. /* Subroutine */ int cgeesx_(char *jobvs, char *sort, L_fp select, char *
  604. sense, integer *n, complex *a, integer *lda, integer *sdim, complex *
  605. w, complex *vs, integer *ldvs, real *rconde, real *rcondv, complex *
  606. work, integer *lwork, real *rwork, logical *bwork, integer *info)
  607. {
  608. /* System generated locals */
  609. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;
  610. /* Local variables */
  611. integer ibal;
  612. real anrm;
  613. integer ierr, itau, iwrk, lwrk, i__, icond, ieval;
  614. extern logical lsame_(char *, char *);
  615. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  616. complex *, integer *), cgebak_(char *, char *, integer *, integer
  617. *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
  618. integer *, integer *, real *, integer *), slabad_(real *,
  619. real *);
  620. logical scalea;
  621. extern real clange_(char *, integer *, integer *, complex *, integer *,
  622. real *);
  623. real cscale;
  624. extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *,
  625. complex *, integer *, complex *, complex *, integer *, integer *),
  626. clascl_(char *, integer *, integer *, real *, real *, integer *,
  627. integer *, complex *, integer *, integer *);
  628. extern real slamch_(char *);
  629. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  630. *, integer *, complex *, integer *), xerbla_(char *,
  631. integer *, ftnlen);
  632. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  633. integer *, integer *, ftnlen, ftnlen);
  634. real bignum;
  635. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  636. real *, integer *, integer *, real *, integer *, integer *), chseqr_(char *, char *, integer *, integer *, integer *,
  637. complex *, integer *, complex *, complex *, integer *, complex *,
  638. integer *, integer *), cunghr_(integer *, integer
  639. *, integer *, complex *, integer *, complex *, complex *, integer
  640. *, integer *);
  641. logical wantsb;
  642. extern /* Subroutine */ int ctrsen_(char *, char *, logical *, integer *,
  643. complex *, integer *, complex *, integer *, complex *, integer *,
  644. real *, real *, complex *, integer *, integer *);
  645. logical wantse;
  646. integer minwrk, maxwrk;
  647. logical wantsn;
  648. real smlnum;
  649. integer hswork;
  650. logical wantst, lquery, wantsv, wantvs;
  651. integer ihi, ilo;
  652. real dum[1], eps;
  653. /* -- LAPACK driver routine (version 3.7.0) -- */
  654. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  655. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  656. /* June 2016 */
  657. /* ===================================================================== */
  658. /* Test the input arguments */
  659. /* Parameter adjustments */
  660. a_dim1 = *lda;
  661. a_offset = 1 + a_dim1 * 1;
  662. a -= a_offset;
  663. --w;
  664. vs_dim1 = *ldvs;
  665. vs_offset = 1 + vs_dim1 * 1;
  666. vs -= vs_offset;
  667. --work;
  668. --rwork;
  669. --bwork;
  670. /* Function Body */
  671. *info = 0;
  672. wantvs = lsame_(jobvs, "V");
  673. wantst = lsame_(sort, "S");
  674. wantsn = lsame_(sense, "N");
  675. wantse = lsame_(sense, "E");
  676. wantsv = lsame_(sense, "V");
  677. wantsb = lsame_(sense, "B");
  678. lquery = *lwork == -1;
  679. if (! wantvs && ! lsame_(jobvs, "N")) {
  680. *info = -1;
  681. } else if (! wantst && ! lsame_(sort, "N")) {
  682. *info = -2;
  683. } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
  684. wantsn) {
  685. *info = -4;
  686. } else if (*n < 0) {
  687. *info = -5;
  688. } else if (*lda < f2cmax(1,*n)) {
  689. *info = -7;
  690. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  691. *info = -11;
  692. }
  693. /* Compute workspace */
  694. /* (Note: Comments in the code beginning "Workspace:" describe the */
  695. /* minimal amount of real workspace needed at that point in the */
  696. /* code, as well as the preferred amount for good performance. */
  697. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  698. /* workspace. NB refers to the optimal block size for the */
  699. /* immediately following subroutine, as returned by ILAENV. */
  700. /* HSWORK refers to the workspace preferred by CHSEQR, as */
  701. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  702. /* the worst case. */
  703. /* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
  704. /* depends on SDIM, which is computed by the routine CTRSEN later */
  705. /* in the code.) */
  706. if (*info == 0) {
  707. if (*n == 0) {
  708. minwrk = 1;
  709. lwrk = 1;
  710. } else {
  711. maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
  712. c__0, (ftnlen)6, (ftnlen)1);
  713. minwrk = *n << 1;
  714. chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
  715. vs_offset], ldvs, &work[1], &c_n1, &ieval);
  716. hswork = work[1].r;
  717. if (! wantvs) {
  718. maxwrk = f2cmax(maxwrk,hswork);
  719. } else {
  720. /* Computing MAX */
  721. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  722. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  723. maxwrk = f2cmax(i__1,i__2);
  724. maxwrk = f2cmax(maxwrk,hswork);
  725. }
  726. lwrk = maxwrk;
  727. if (! wantsn) {
  728. /* Computing MAX */
  729. i__1 = lwrk, i__2 = *n * *n / 2;
  730. lwrk = f2cmax(i__1,i__2);
  731. }
  732. }
  733. work[1].r = (real) lwrk, work[1].i = 0.f;
  734. if (*lwork < minwrk && ! lquery) {
  735. *info = -15;
  736. }
  737. }
  738. if (*info != 0) {
  739. i__1 = -(*info);
  740. xerbla_("CGEESX", &i__1, (ftnlen)6);
  741. return 0;
  742. } else if (lquery) {
  743. return 0;
  744. }
  745. /* Quick return if possible */
  746. if (*n == 0) {
  747. *sdim = 0;
  748. return 0;
  749. }
  750. /* Get machine constants */
  751. eps = slamch_("P");
  752. smlnum = slamch_("S");
  753. bignum = 1.f / smlnum;
  754. slabad_(&smlnum, &bignum);
  755. smlnum = sqrt(smlnum) / eps;
  756. bignum = 1.f / smlnum;
  757. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  758. anrm = clange_("M", n, n, &a[a_offset], lda, dum);
  759. scalea = FALSE_;
  760. if (anrm > 0.f && anrm < smlnum) {
  761. scalea = TRUE_;
  762. cscale = smlnum;
  763. } else if (anrm > bignum) {
  764. scalea = TRUE_;
  765. cscale = bignum;
  766. }
  767. if (scalea) {
  768. clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  769. ierr);
  770. }
  771. /* Permute the matrix to make it more nearly triangular */
  772. /* (CWorkspace: none) */
  773. /* (RWorkspace: need N) */
  774. ibal = 1;
  775. cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
  776. /* Reduce to upper Hessenberg form */
  777. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  778. /* (RWorkspace: none) */
  779. itau = 1;
  780. iwrk = *n + itau;
  781. i__1 = *lwork - iwrk + 1;
  782. cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  783. &ierr);
  784. if (wantvs) {
  785. /* Copy Householder vectors to VS */
  786. clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  787. ;
  788. /* Generate unitary matrix in VS */
  789. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  790. /* (RWorkspace: none) */
  791. i__1 = *lwork - iwrk + 1;
  792. cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  793. &i__1, &ierr);
  794. }
  795. *sdim = 0;
  796. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  797. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  798. /* (RWorkspace: none) */
  799. iwrk = itau;
  800. i__1 = *lwork - iwrk + 1;
  801. chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
  802. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  803. if (ieval > 0) {
  804. *info = ieval;
  805. }
  806. /* Sort eigenvalues if desired */
  807. if (wantst && *info == 0) {
  808. if (scalea) {
  809. clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
  810. ierr);
  811. }
  812. i__1 = *n;
  813. for (i__ = 1; i__ <= i__1; ++i__) {
  814. bwork[i__] = (*select)(&w[i__]);
  815. /* L10: */
  816. }
  817. /* Reorder eigenvalues, transform Schur vectors, and compute */
  818. /* reciprocal condition numbers */
  819. /* (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */
  820. /* otherwise, need none ) */
  821. /* (RWorkspace: none) */
  822. i__1 = *lwork - iwrk + 1;
  823. ctrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  824. ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, &
  825. icond);
  826. if (! wantsn) {
  827. /* Computing MAX */
  828. i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
  829. maxwrk = f2cmax(i__1,i__2);
  830. }
  831. if (icond == -14) {
  832. /* Not enough complex workspace */
  833. *info = -15;
  834. }
  835. }
  836. if (wantvs) {
  837. /* Undo balancing */
  838. /* (CWorkspace: none) */
  839. /* (RWorkspace: need N) */
  840. cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
  841. ldvs, &ierr);
  842. }
  843. if (scalea) {
  844. /* Undo scaling for the Schur form of A */
  845. clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  846. ierr);
  847. i__1 = *lda + 1;
  848. ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
  849. if ((wantsv || wantsb) && *info == 0) {
  850. dum[0] = *rcondv;
  851. slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
  852. c__1, &ierr);
  853. *rcondv = dum[0];
  854. }
  855. }
  856. work[1].r = (real) maxwrk, work[1].i = 0.f;
  857. return 0;
  858. /* End of CGEESX */
  859. } /* cgeesx_ */