You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgees.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c__0 = 0;
  382. static integer c_n1 = -1;
  383. /* > \brief <b> CGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  384. or GE matrices</b> */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download CGEES + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgees.f
  391. "> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgees.f
  394. "> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgees.f
  397. "> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE CGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, */
  403. /* LDVS, WORK, LWORK, RWORK, BWORK, INFO ) */
  404. /* CHARACTER JOBVS, SORT */
  405. /* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
  406. /* LOGICAL BWORK( * ) */
  407. /* REAL RWORK( * ) */
  408. /* COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) */
  409. /* LOGICAL SELECT */
  410. /* EXTERNAL SELECT */
  411. /* > \par Purpose: */
  412. /* ============= */
  413. /* > */
  414. /* > \verbatim */
  415. /* > */
  416. /* > CGEES computes for an N-by-N complex nonsymmetric matrix A, the */
  417. /* > eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
  418. /* > vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */
  419. /* > */
  420. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  421. /* > Schur form so that selected eigenvalues are at the top left. */
  422. /* > The leading columns of Z then form an orthonormal basis for the */
  423. /* > invariant subspace corresponding to the selected eigenvalues. */
  424. /* > */
  425. /* > A complex matrix is in Schur form if it is upper triangular. */
  426. /* > \endverbatim */
  427. /* Arguments: */
  428. /* ========== */
  429. /* > \param[in] JOBVS */
  430. /* > \verbatim */
  431. /* > JOBVS is CHARACTER*1 */
  432. /* > = 'N': Schur vectors are not computed; */
  433. /* > = 'V': Schur vectors are computed. */
  434. /* > \endverbatim */
  435. /* > */
  436. /* > \param[in] SORT */
  437. /* > \verbatim */
  438. /* > SORT is CHARACTER*1 */
  439. /* > Specifies whether or not to order the eigenvalues on the */
  440. /* > diagonal of the Schur form. */
  441. /* > = 'N': Eigenvalues are not ordered: */
  442. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] SELECT */
  446. /* > \verbatim */
  447. /* > SELECT is a LOGICAL FUNCTION of one COMPLEX argument */
  448. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  449. /* > If SORT = 'S', SELECT is used to select eigenvalues to order */
  450. /* > to the top left of the Schur form. */
  451. /* > IF SORT = 'N', SELECT is not referenced. */
  452. /* > The eigenvalue W(j) is selected if SELECT(W(j)) is true. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] N */
  456. /* > \verbatim */
  457. /* > N is INTEGER */
  458. /* > The order of the matrix A. N >= 0. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in,out] A */
  462. /* > \verbatim */
  463. /* > A is COMPLEX array, dimension (LDA,N) */
  464. /* > On entry, the N-by-N matrix A. */
  465. /* > On exit, A has been overwritten by its Schur form T. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] LDA */
  469. /* > \verbatim */
  470. /* > LDA is INTEGER */
  471. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[out] SDIM */
  475. /* > \verbatim */
  476. /* > SDIM is INTEGER */
  477. /* > If SORT = 'N', SDIM = 0. */
  478. /* > If SORT = 'S', SDIM = number of eigenvalues for which */
  479. /* > SELECT is true. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[out] W */
  483. /* > \verbatim */
  484. /* > W is COMPLEX array, dimension (N) */
  485. /* > W contains the computed eigenvalues, in the same order that */
  486. /* > they appear on the diagonal of the output Schur form T. */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[out] VS */
  490. /* > \verbatim */
  491. /* > VS is COMPLEX array, dimension (LDVS,N) */
  492. /* > If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
  493. /* > vectors. */
  494. /* > If JOBVS = 'N', VS is not referenced. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[in] LDVS */
  498. /* > \verbatim */
  499. /* > LDVS is INTEGER */
  500. /* > The leading dimension of the array VS. LDVS >= 1; if */
  501. /* > JOBVS = 'V', LDVS >= N. */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[out] WORK */
  505. /* > \verbatim */
  506. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  507. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[in] LWORK */
  511. /* > \verbatim */
  512. /* > LWORK is INTEGER */
  513. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  514. /* > For good performance, LWORK must generally be larger. */
  515. /* > */
  516. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  517. /* > only calculates the optimal size of the WORK array, returns */
  518. /* > this value as the first entry of the WORK array, and no error */
  519. /* > message related to LWORK is issued by XERBLA. */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \param[out] RWORK */
  523. /* > \verbatim */
  524. /* > RWORK is REAL array, dimension (N) */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[out] BWORK */
  528. /* > \verbatim */
  529. /* > BWORK is LOGICAL array, dimension (N) */
  530. /* > Not referenced if SORT = 'N'. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[out] INFO */
  534. /* > \verbatim */
  535. /* > INFO is INTEGER */
  536. /* > = 0: successful exit */
  537. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  538. /* > > 0: if INFO = i, and i is */
  539. /* > <= N: the QR algorithm failed to compute all the */
  540. /* > eigenvalues; elements 1:ILO-1 and i+1:N of W */
  541. /* > contain those eigenvalues which have converged; */
  542. /* > if JOBVS = 'V', VS contains the matrix which */
  543. /* > reduces A to its partially converged Schur form. */
  544. /* > = N+1: the eigenvalues could not be reordered because */
  545. /* > some eigenvalues were too close to separate (the */
  546. /* > problem is very ill-conditioned); */
  547. /* > = N+2: after reordering, roundoff changed values of */
  548. /* > some complex eigenvalues so that leading */
  549. /* > eigenvalues in the Schur form no longer satisfy */
  550. /* > SELECT = .TRUE.. This could also be caused by */
  551. /* > underflow due to scaling. */
  552. /* > \endverbatim */
  553. /* Authors: */
  554. /* ======== */
  555. /* > \author Univ. of Tennessee */
  556. /* > \author Univ. of California Berkeley */
  557. /* > \author Univ. of Colorado Denver */
  558. /* > \author NAG Ltd. */
  559. /* > \date December 2016 */
  560. /* > \ingroup complexGEeigen */
  561. /* ===================================================================== */
  562. /* Subroutine */ int cgees_(char *jobvs, char *sort, L_fp select, integer *n,
  563. complex *a, integer *lda, integer *sdim, complex *w, complex *vs,
  564. integer *ldvs, complex *work, integer *lwork, real *rwork, logical *
  565. bwork, integer *info)
  566. {
  567. /* System generated locals */
  568. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;
  569. /* Local variables */
  570. integer ibal;
  571. real anrm;
  572. integer ierr, itau, iwrk, i__;
  573. real s;
  574. integer icond, ieval;
  575. extern logical lsame_(char *, char *);
  576. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  577. complex *, integer *), cgebak_(char *, char *, integer *, integer
  578. *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
  579. integer *, integer *, real *, integer *), slabad_(real *,
  580. real *);
  581. logical scalea;
  582. extern real clange_(char *, integer *, integer *, complex *, integer *,
  583. real *);
  584. real cscale;
  585. extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *,
  586. complex *, integer *, complex *, complex *, integer *, integer *),
  587. clascl_(char *, integer *, integer *, real *, real *, integer *,
  588. integer *, complex *, integer *, integer *);
  589. extern real slamch_(char *);
  590. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  591. *, integer *, complex *, integer *), xerbla_(char *,
  592. integer *, ftnlen);
  593. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  594. integer *, integer *, ftnlen, ftnlen);
  595. real bignum;
  596. extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *,
  597. integer *, complex *, integer *, complex *, complex *, integer *,
  598. complex *, integer *, integer *), cunghr_(integer
  599. *, integer *, integer *, complex *, integer *, complex *, complex
  600. *, integer *, integer *), ctrsen_(char *, char *, logical *,
  601. integer *, complex *, integer *, complex *, integer *, complex *,
  602. integer *, real *, real *, complex *, integer *, integer *);
  603. integer minwrk, maxwrk;
  604. real smlnum;
  605. integer hswork;
  606. logical wantst, lquery, wantvs;
  607. integer ihi, ilo;
  608. real dum[1], eps, sep;
  609. /* -- LAPACK driver routine (version 3.7.0) -- */
  610. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  611. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  612. /* December 2016 */
  613. /* ===================================================================== */
  614. /* Test the input arguments */
  615. /* Parameter adjustments */
  616. a_dim1 = *lda;
  617. a_offset = 1 + a_dim1 * 1;
  618. a -= a_offset;
  619. --w;
  620. vs_dim1 = *ldvs;
  621. vs_offset = 1 + vs_dim1 * 1;
  622. vs -= vs_offset;
  623. --work;
  624. --rwork;
  625. --bwork;
  626. /* Function Body */
  627. *info = 0;
  628. lquery = *lwork == -1;
  629. wantvs = lsame_(jobvs, "V");
  630. wantst = lsame_(sort, "S");
  631. if (! wantvs && ! lsame_(jobvs, "N")) {
  632. *info = -1;
  633. } else if (! wantst && ! lsame_(sort, "N")) {
  634. *info = -2;
  635. } else if (*n < 0) {
  636. *info = -4;
  637. } else if (*lda < f2cmax(1,*n)) {
  638. *info = -6;
  639. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  640. *info = -10;
  641. }
  642. /* Compute workspace */
  643. /* (Note: Comments in the code beginning "Workspace:" describe the */
  644. /* minimal amount of workspace needed at that point in the code, */
  645. /* as well as the preferred amount for good performance. */
  646. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  647. /* workspace. NB refers to the optimal block size for the */
  648. /* immediately following subroutine, as returned by ILAENV. */
  649. /* HSWORK refers to the workspace preferred by CHSEQR, as */
  650. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  651. /* the worst case.) */
  652. if (*info == 0) {
  653. if (*n == 0) {
  654. minwrk = 1;
  655. maxwrk = 1;
  656. } else {
  657. maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
  658. c__0, (ftnlen)6, (ftnlen)1);
  659. minwrk = *n << 1;
  660. chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
  661. vs_offset], ldvs, &work[1], &c_n1, &ieval);
  662. hswork = work[1].r;
  663. if (! wantvs) {
  664. maxwrk = f2cmax(maxwrk,hswork);
  665. } else {
  666. /* Computing MAX */
  667. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  668. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  669. maxwrk = f2cmax(i__1,i__2);
  670. maxwrk = f2cmax(maxwrk,hswork);
  671. }
  672. }
  673. work[1].r = (real) maxwrk, work[1].i = 0.f;
  674. if (*lwork < minwrk && ! lquery) {
  675. *info = -12;
  676. }
  677. }
  678. if (*info != 0) {
  679. i__1 = -(*info);
  680. xerbla_("CGEES ", &i__1, (ftnlen)6);
  681. return 0;
  682. } else if (lquery) {
  683. return 0;
  684. }
  685. /* Quick return if possible */
  686. if (*n == 0) {
  687. *sdim = 0;
  688. return 0;
  689. }
  690. /* Get machine constants */
  691. eps = slamch_("P");
  692. smlnum = slamch_("S");
  693. bignum = 1.f / smlnum;
  694. slabad_(&smlnum, &bignum);
  695. smlnum = sqrt(smlnum) / eps;
  696. bignum = 1.f / smlnum;
  697. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  698. anrm = clange_("M", n, n, &a[a_offset], lda, dum);
  699. scalea = FALSE_;
  700. if (anrm > 0.f && anrm < smlnum) {
  701. scalea = TRUE_;
  702. cscale = smlnum;
  703. } else if (anrm > bignum) {
  704. scalea = TRUE_;
  705. cscale = bignum;
  706. }
  707. if (scalea) {
  708. clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  709. ierr);
  710. }
  711. /* Permute the matrix to make it more nearly triangular */
  712. /* (CWorkspace: none) */
  713. /* (RWorkspace: need N) */
  714. ibal = 1;
  715. cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
  716. /* Reduce to upper Hessenberg form */
  717. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  718. /* (RWorkspace: none) */
  719. itau = 1;
  720. iwrk = *n + itau;
  721. i__1 = *lwork - iwrk + 1;
  722. cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  723. &ierr);
  724. if (wantvs) {
  725. /* Copy Householder vectors to VS */
  726. clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  727. ;
  728. /* Generate unitary matrix in VS */
  729. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  730. /* (RWorkspace: none) */
  731. i__1 = *lwork - iwrk + 1;
  732. cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  733. &i__1, &ierr);
  734. }
  735. *sdim = 0;
  736. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  737. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  738. /* (RWorkspace: none) */
  739. iwrk = itau;
  740. i__1 = *lwork - iwrk + 1;
  741. chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
  742. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  743. if (ieval > 0) {
  744. *info = ieval;
  745. }
  746. /* Sort eigenvalues if desired */
  747. if (wantst && *info == 0) {
  748. if (scalea) {
  749. clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
  750. ierr);
  751. }
  752. i__1 = *n;
  753. for (i__ = 1; i__ <= i__1; ++i__) {
  754. bwork[i__] = (*select)(&w[i__]);
  755. /* L10: */
  756. }
  757. /* Reorder eigenvalues and transform Schur vectors */
  758. /* (CWorkspace: none) */
  759. /* (RWorkspace: none) */
  760. i__1 = *lwork - iwrk + 1;
  761. ctrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  762. ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond);
  763. }
  764. if (wantvs) {
  765. /* Undo balancing */
  766. /* (CWorkspace: none) */
  767. /* (RWorkspace: need N) */
  768. cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset],
  769. ldvs, &ierr);
  770. }
  771. if (scalea) {
  772. /* Undo scaling for the Schur form of A */
  773. clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  774. ierr);
  775. i__1 = *lda + 1;
  776. ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
  777. }
  778. work[1].r = (real) maxwrk, work[1].i = 0.f;
  779. return 0;
  780. /* End of CGEES */
  781. } /* cgees_ */