You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggsvp.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  191. #define d_log(x) (log(*(x)))
  192. #define d_mod(x, y) (fmod(*(x), *(y)))
  193. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  194. #define d_nint(x) u_nint(*(x))
  195. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  196. #define d_sign(a,b) u_sign(*(a),*(b))
  197. #define d_sin(x) (sin(*(x)))
  198. #define d_sinh(x) (sinh(*(x)))
  199. #define d_sqrt(x) (sqrt(*(x)))
  200. #define d_tan(x) (tan(*(x)))
  201. #define d_tanh(x) (tanh(*(x)))
  202. #define i_abs(x) abs(*(x))
  203. #define i_dnnt(x) ((integer)u_nint(*(x)))
  204. #define i_len(s, n) (n)
  205. #define i_nint(x) ((integer)u_nint(*(x)))
  206. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  207. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  208. #define pow_si(B,E) spow_ui(*(B),*(E))
  209. #define pow_di(B,E) dpow_ui(*(B),*(E))
  210. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  211. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  212. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  213. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  214. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  215. #define sig_die(s, kill) { exit(1); }
  216. #define s_stop(s, n) {exit(0);}
  217. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  218. #define z_abs(z) (cabs(Cd(z)))
  219. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  220. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  221. #define myexit_() break;
  222. #define mycycle() continue;
  223. #define myceiling(w) {ceil(w)}
  224. #define myhuge(w) {HUGE_VAL}
  225. #define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  226. /* procedure parameter types for -A and -C++ */
  227. #define F2C_proc_par_types 1
  228. #ifdef __cplusplus
  229. typedef logical (*L_fp)(...);
  230. #else
  231. typedef logical (*L_fp)();
  232. #endif
  233. static float spow_ui(float x, integer n) {
  234. float pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static double dpow_ui(double x, integer n) {
  246. double pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex float cpow_ui(_Complex float x, integer n) {
  258. _Complex float pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static _Complex double zpow_ui(_Complex double x, integer n) {
  270. _Complex double pow=1.0; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x = 1/x;
  273. for(u = n; ; ) {
  274. if(u & 01) pow *= x;
  275. if(u >>= 1) x *= x;
  276. else break;
  277. }
  278. }
  279. return pow;
  280. }
  281. static integer pow_ii(integer x, integer n) {
  282. integer pow; unsigned long int u;
  283. if (n <= 0) {
  284. if (n == 0 || x == 1) pow = 1;
  285. else if (x != -1) pow = x == 0 ? 1/x : 0;
  286. else n = -n;
  287. }
  288. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  289. u = n;
  290. for(pow = 1; ; ) {
  291. if(u & 01) pow *= x;
  292. if(u >>= 1) x *= x;
  293. else break;
  294. }
  295. }
  296. return pow;
  297. }
  298. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  299. {
  300. double m; integer i, mi;
  301. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  302. if (w[i-1]>m) mi=i ,m=w[i-1];
  303. return mi-s+1;
  304. }
  305. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  306. {
  307. float m; integer i, mi;
  308. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  309. if (w[i-1]>m) mi=i ,m=w[i-1];
  310. return mi-s+1;
  311. }
  312. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  313. integer n = *n_, incx = *incx_, incy = *incy_, i;
  314. _Complex float zdotc = 0.0;
  315. if (incx == 1 && incy == 1) {
  316. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  317. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  318. }
  319. } else {
  320. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  321. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  322. }
  323. }
  324. pCf(z) = zdotc;
  325. }
  326. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  327. integer n = *n_, incx = *incx_, incy = *incy_, i;
  328. _Complex double zdotc = 0.0;
  329. if (incx == 1 && incy == 1) {
  330. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  331. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  332. }
  333. } else {
  334. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  335. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  336. }
  337. }
  338. pCd(z) = zdotc;
  339. }
  340. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  341. integer n = *n_, incx = *incx_, incy = *incy_, i;
  342. _Complex float zdotc = 0.0;
  343. if (incx == 1 && incy == 1) {
  344. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  345. zdotc += Cf(&x[i]) * Cf(&y[i]);
  346. }
  347. } else {
  348. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  349. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  350. }
  351. }
  352. pCf(z) = zdotc;
  353. }
  354. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  355. integer n = *n_, incx = *incx_, incy = *incy_, i;
  356. _Complex double zdotc = 0.0;
  357. if (incx == 1 && incy == 1) {
  358. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  359. zdotc += Cd(&x[i]) * Cd(&y[i]);
  360. }
  361. } else {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  364. }
  365. }
  366. pCd(z) = zdotc;
  367. }
  368. #endif
  369. /* -- translated by f2c (version 20000121).
  370. You must link the resulting object file with the libraries:
  371. -lf2c -lm (in that order)
  372. */
  373. /* Table of constant values */
  374. static doublereal c_b12 = 0.;
  375. static doublereal c_b22 = 1.;
  376. /* > \brief \b DGGSVP */
  377. /* =========== DOCUMENTATION =========== */
  378. /* Online html documentation available at */
  379. /* http://www.netlib.org/lapack/explore-html/ */
  380. /* > \htmlonly */
  381. /* > Download DGGSVP + dependencies */
  382. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp.
  383. f"> */
  384. /* > [TGZ]</a> */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp.
  386. f"> */
  387. /* > [ZIP]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp.
  389. f"> */
  390. /* > [TXT]</a> */
  391. /* > \endhtmlonly */
  392. /* Definition: */
  393. /* =========== */
  394. /* SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  395. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  396. /* IWORK, TAU, WORK, INFO ) */
  397. /* CHARACTER JOBQ, JOBU, JOBV */
  398. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
  399. /* DOUBLE PRECISION TOLA, TOLB */
  400. /* INTEGER IWORK( * ) */
  401. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  402. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  403. /* > \par Purpose: */
  404. /* ============= */
  405. /* > */
  406. /* > \verbatim */
  407. /* > */
  408. /* > This routine is deprecated and has been replaced by routine DGGSVP3. */
  409. /* > */
  410. /* > DGGSVP computes orthogonal matrices U, V and Q such that */
  411. /* > */
  412. /* > N-K-L K L */
  413. /* > U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  414. /* > L ( 0 0 A23 ) */
  415. /* > M-K-L ( 0 0 0 ) */
  416. /* > */
  417. /* > N-K-L K L */
  418. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  419. /* > M-K ( 0 0 A23 ) */
  420. /* > */
  421. /* > N-K-L K L */
  422. /* > V**T*B*Q = L ( 0 0 B13 ) */
  423. /* > P-L ( 0 0 0 ) */
  424. /* > */
  425. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  426. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  427. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  428. /* > numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. */
  429. /* > */
  430. /* > This decomposition is the preprocessing step for computing the */
  431. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  432. /* > DGGSVD. */
  433. /* > \endverbatim */
  434. /* Arguments: */
  435. /* ========== */
  436. /* > \param[in] JOBU */
  437. /* > \verbatim */
  438. /* > JOBU is CHARACTER*1 */
  439. /* > = 'U': Orthogonal matrix U is computed; */
  440. /* > = 'N': U is not computed. */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[in] JOBV */
  444. /* > \verbatim */
  445. /* > JOBV is CHARACTER*1 */
  446. /* > = 'V': Orthogonal matrix V is computed; */
  447. /* > = 'N': V is not computed. */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] JOBQ */
  451. /* > \verbatim */
  452. /* > JOBQ is CHARACTER*1 */
  453. /* > = 'Q': Orthogonal matrix Q is computed; */
  454. /* > = 'N': Q is not computed. */
  455. /* > \endverbatim */
  456. /* > */
  457. /* > \param[in] M */
  458. /* > \verbatim */
  459. /* > M is INTEGER */
  460. /* > The number of rows of the matrix A. M >= 0. */
  461. /* > \endverbatim */
  462. /* > */
  463. /* > \param[in] P */
  464. /* > \verbatim */
  465. /* > P is INTEGER */
  466. /* > The number of rows of the matrix B. P >= 0. */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[in] N */
  470. /* > \verbatim */
  471. /* > N is INTEGER */
  472. /* > The number of columns of the matrices A and B. N >= 0. */
  473. /* > \endverbatim */
  474. /* > */
  475. /* > \param[in,out] A */
  476. /* > \verbatim */
  477. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  478. /* > On entry, the M-by-N matrix A. */
  479. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  480. /* > described in the Purpose section. */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[in] LDA */
  484. /* > \verbatim */
  485. /* > LDA is INTEGER */
  486. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[in,out] B */
  490. /* > \verbatim */
  491. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  492. /* > On entry, the P-by-N matrix B. */
  493. /* > On exit, B contains the triangular matrix described in */
  494. /* > the Purpose section. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[in] LDB */
  498. /* > \verbatim */
  499. /* > LDB is INTEGER */
  500. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  501. /* > \endverbatim */
  502. /* > */
  503. /* > \param[in] TOLA */
  504. /* > \verbatim */
  505. /* > TOLA is DOUBLE PRECISION */
  506. /* > \endverbatim */
  507. /* > */
  508. /* > \param[in] TOLB */
  509. /* > \verbatim */
  510. /* > TOLB is DOUBLE PRECISION */
  511. /* > */
  512. /* > TOLA and TOLB are the thresholds to determine the effective */
  513. /* > numerical rank of matrix B and a subblock of A. Generally, */
  514. /* > they are set to */
  515. /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
  516. /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
  517. /* > The size of TOLA and TOLB may affect the size of backward */
  518. /* > errors of the decomposition. */
  519. /* > \endverbatim */
  520. /* > */
  521. /* > \param[out] K */
  522. /* > \verbatim */
  523. /* > K is INTEGER */
  524. /* > \endverbatim */
  525. /* > */
  526. /* > \param[out] L */
  527. /* > \verbatim */
  528. /* > L is INTEGER */
  529. /* > */
  530. /* > On exit, K and L specify the dimension of the subblocks */
  531. /* > described in Purpose section. */
  532. /* > K + L = effective numerical rank of (A**T,B**T)**T. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[out] U */
  536. /* > \verbatim */
  537. /* > U is DOUBLE PRECISION array, dimension (LDU,M) */
  538. /* > If JOBU = 'U', U contains the orthogonal matrix U. */
  539. /* > If JOBU = 'N', U is not referenced. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] LDU */
  543. /* > \verbatim */
  544. /* > LDU is INTEGER */
  545. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  546. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[out] V */
  550. /* > \verbatim */
  551. /* > V is DOUBLE PRECISION array, dimension (LDV,P) */
  552. /* > If JOBV = 'V', V contains the orthogonal matrix V. */
  553. /* > If JOBV = 'N', V is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDV */
  557. /* > \verbatim */
  558. /* > LDV is INTEGER */
  559. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  560. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] Q */
  564. /* > \verbatim */
  565. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  566. /* > If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
  567. /* > If JOBQ = 'N', Q is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDQ */
  571. /* > \verbatim */
  572. /* > LDQ is INTEGER */
  573. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  574. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] IWORK */
  578. /* > \verbatim */
  579. /* > IWORK is INTEGER array, dimension (N) */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[out] TAU */
  583. /* > \verbatim */
  584. /* > TAU is DOUBLE PRECISION array, dimension (N) */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] WORK */
  588. /* > \verbatim */
  589. /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(3*N,M,P)) */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] INFO */
  593. /* > \verbatim */
  594. /* > INFO is INTEGER */
  595. /* > = 0: successful exit */
  596. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  597. /* > \endverbatim */
  598. /* Authors: */
  599. /* ======== */
  600. /* > \author Univ. of Tennessee */
  601. /* > \author Univ. of California Berkeley */
  602. /* > \author Univ. of Colorado Denver */
  603. /* > \author NAG Ltd. */
  604. /* > \date December 2016 */
  605. /* > \ingroup doubleOTHERcomputational */
  606. /* > \par Further Details: */
  607. /* ===================== */
  608. /* > */
  609. /* > The subroutine uses LAPACK subroutine DGEQPF for the QR factorization */
  610. /* > with column pivoting to detect the effective numerical rank of the */
  611. /* > a matrix. It may be replaced by a better rank determination strategy. */
  612. /* > */
  613. /* ===================================================================== */
  614. /* Subroutine */ int dggsvp_(char *jobu, char *jobv, char *jobq, integer *m,
  615. integer *p, integer *n, doublereal *a, integer *lda, doublereal *b,
  616. integer *ldb, doublereal *tola, doublereal *tolb, integer *k, integer
  617. *l, doublereal *u, integer *ldu, doublereal *v, integer *ldv,
  618. doublereal *q, integer *ldq, integer *iwork, doublereal *tau,
  619. doublereal *work, integer *info)
  620. {
  621. /* System generated locals */
  622. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  623. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  624. doublereal d__1;
  625. /* Local variables */
  626. integer i__, j;
  627. extern logical lsame_(char *, char *);
  628. logical wantq, wantu, wantv;
  629. extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
  630. integer *, doublereal *, doublereal *, integer *), dgerq2_(
  631. integer *, integer *, doublereal *, integer *, doublereal *,
  632. doublereal *, integer *), dorg2r_(integer *, integer *, integer *,
  633. doublereal *, integer *, doublereal *, doublereal *, integer *),
  634. dorm2r_(char *, char *, integer *, integer *, integer *,
  635. doublereal *, integer *, doublereal *, doublereal *, integer *,
  636. doublereal *, integer *), dormr2_(char *, char *,
  637. integer *, integer *, integer *, doublereal *, integer *,
  638. doublereal *, doublereal *, integer *, doublereal *, integer *), dgeqpf_(integer *, integer *, doublereal *,
  639. integer *, integer *, doublereal *, doublereal *, integer *),
  640. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  641. doublereal *, integer *), dlaset_(char *, integer *,
  642. integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlapmt_(logical *,
  643. integer *, integer *, doublereal *, integer *, integer *);
  644. logical forwrd;
  645. /* -- LAPACK computational routine (version 3.7.0) -- */
  646. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  647. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  648. /* December 2016 */
  649. /* ===================================================================== */
  650. /* Test the input parameters */
  651. /* Parameter adjustments */
  652. a_dim1 = *lda;
  653. a_offset = 1 + a_dim1 * 1;
  654. a -= a_offset;
  655. b_dim1 = *ldb;
  656. b_offset = 1 + b_dim1 * 1;
  657. b -= b_offset;
  658. u_dim1 = *ldu;
  659. u_offset = 1 + u_dim1 * 1;
  660. u -= u_offset;
  661. v_dim1 = *ldv;
  662. v_offset = 1 + v_dim1 * 1;
  663. v -= v_offset;
  664. q_dim1 = *ldq;
  665. q_offset = 1 + q_dim1 * 1;
  666. q -= q_offset;
  667. --iwork;
  668. --tau;
  669. --work;
  670. /* Function Body */
  671. wantu = lsame_(jobu, "U");
  672. wantv = lsame_(jobv, "V");
  673. wantq = lsame_(jobq, "Q");
  674. forwrd = TRUE_;
  675. *info = 0;
  676. if (! (wantu || lsame_(jobu, "N"))) {
  677. *info = -1;
  678. } else if (! (wantv || lsame_(jobv, "N"))) {
  679. *info = -2;
  680. } else if (! (wantq || lsame_(jobq, "N"))) {
  681. *info = -3;
  682. } else if (*m < 0) {
  683. *info = -4;
  684. } else if (*p < 0) {
  685. *info = -5;
  686. } else if (*n < 0) {
  687. *info = -6;
  688. } else if (*lda < f2cmax(1,*m)) {
  689. *info = -8;
  690. } else if (*ldb < f2cmax(1,*p)) {
  691. *info = -10;
  692. } else if (*ldu < 1 || wantu && *ldu < *m) {
  693. *info = -16;
  694. } else if (*ldv < 1 || wantv && *ldv < *p) {
  695. *info = -18;
  696. } else if (*ldq < 1 || wantq && *ldq < *n) {
  697. *info = -20;
  698. }
  699. if (*info != 0) {
  700. i__1 = -(*info);
  701. xerbla_("DGGSVP", &i__1);
  702. return 0;
  703. }
  704. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  705. /* ( 0 0 ) */
  706. i__1 = *n;
  707. for (i__ = 1; i__ <= i__1; ++i__) {
  708. iwork[i__] = 0;
  709. /* L10: */
  710. }
  711. dgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], info);
  712. /* Update A := A*P */
  713. dlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  714. /* Determine the effective rank of matrix B. */
  715. *l = 0;
  716. i__1 = f2cmin(*p,*n);
  717. for (i__ = 1; i__ <= i__1; ++i__) {
  718. if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) > *tolb) {
  719. ++(*l);
  720. }
  721. /* L20: */
  722. }
  723. if (wantv) {
  724. /* Copy the details of V, and form V. */
  725. dlaset_("Full", p, p, &c_b12, &c_b12, &v[v_offset], ldv);
  726. if (*p > 1) {
  727. i__1 = *p - 1;
  728. dlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  729. ldv);
  730. }
  731. i__1 = f2cmin(*p,*n);
  732. dorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  733. }
  734. /* Clean up B */
  735. i__1 = *l - 1;
  736. for (j = 1; j <= i__1; ++j) {
  737. i__2 = *l;
  738. for (i__ = j + 1; i__ <= i__2; ++i__) {
  739. b[i__ + j * b_dim1] = 0.;
  740. /* L30: */
  741. }
  742. /* L40: */
  743. }
  744. if (*p > *l) {
  745. i__1 = *p - *l;
  746. dlaset_("Full", &i__1, n, &c_b12, &c_b12, &b[*l + 1 + b_dim1], ldb);
  747. }
  748. if (wantq) {
  749. /* Set Q = I and Update Q := Q*P */
  750. dlaset_("Full", n, n, &c_b12, &c_b22, &q[q_offset], ldq);
  751. dlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  752. }
  753. if (*p >= *l && *n != *l) {
  754. /* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
  755. dgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  756. /* Update A := A*Z**T */
  757. dormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
  758. a_offset], lda, &work[1], info);
  759. if (wantq) {
  760. /* Update Q := Q*Z**T */
  761. dormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
  762. &q[q_offset], ldq, &work[1], info);
  763. }
  764. /* Clean up B */
  765. i__1 = *n - *l;
  766. dlaset_("Full", l, &i__1, &c_b12, &c_b12, &b[b_offset], ldb);
  767. i__1 = *n;
  768. for (j = *n - *l + 1; j <= i__1; ++j) {
  769. i__2 = *l;
  770. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  771. b[i__ + j * b_dim1] = 0.;
  772. /* L50: */
  773. }
  774. /* L60: */
  775. }
  776. }
  777. /* Let N-L L */
  778. /* A = ( A11 A12 ) M, */
  779. /* then the following does the complete QR decomposition of A11: */
  780. /* A11 = U*( 0 T12 )*P1**T */
  781. /* ( 0 0 ) */
  782. i__1 = *n - *l;
  783. for (i__ = 1; i__ <= i__1; ++i__) {
  784. iwork[i__] = 0;
  785. /* L70: */
  786. }
  787. i__1 = *n - *l;
  788. dgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], info);
  789. /* Determine the effective rank of A11 */
  790. *k = 0;
  791. /* Computing MIN */
  792. i__2 = *m, i__3 = *n - *l;
  793. i__1 = f2cmin(i__2,i__3);
  794. for (i__ = 1; i__ <= i__1; ++i__) {
  795. if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) > *tola) {
  796. ++(*k);
  797. }
  798. /* L80: */
  799. }
  800. /* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) */
  801. /* Computing MIN */
  802. i__2 = *m, i__3 = *n - *l;
  803. i__1 = f2cmin(i__2,i__3);
  804. dorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
  805. *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  806. if (wantu) {
  807. /* Copy the details of U, and form U */
  808. dlaset_("Full", m, m, &c_b12, &c_b12, &u[u_offset], ldu);
  809. if (*m > 1) {
  810. i__1 = *m - 1;
  811. i__2 = *n - *l;
  812. dlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  813. , ldu);
  814. }
  815. /* Computing MIN */
  816. i__2 = *m, i__3 = *n - *l;
  817. i__1 = f2cmin(i__2,i__3);
  818. dorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  819. }
  820. if (wantq) {
  821. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  822. i__1 = *n - *l;
  823. dlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  824. }
  825. /* Clean up A: set the strictly lower triangular part of */
  826. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  827. i__1 = *k - 1;
  828. for (j = 1; j <= i__1; ++j) {
  829. i__2 = *k;
  830. for (i__ = j + 1; i__ <= i__2; ++i__) {
  831. a[i__ + j * a_dim1] = 0.;
  832. /* L90: */
  833. }
  834. /* L100: */
  835. }
  836. if (*m > *k) {
  837. i__1 = *m - *k;
  838. i__2 = *n - *l;
  839. dlaset_("Full", &i__1, &i__2, &c_b12, &c_b12, &a[*k + 1 + a_dim1],
  840. lda);
  841. }
  842. if (*n - *l > *k) {
  843. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  844. i__1 = *n - *l;
  845. dgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  846. if (wantq) {
  847. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T */
  848. i__1 = *n - *l;
  849. dormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
  850. tau[1], &q[q_offset], ldq, &work[1], info);
  851. }
  852. /* Clean up A */
  853. i__1 = *n - *l - *k;
  854. dlaset_("Full", k, &i__1, &c_b12, &c_b12, &a[a_offset], lda);
  855. i__1 = *n - *l;
  856. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  857. i__2 = *k;
  858. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  859. a[i__ + j * a_dim1] = 0.;
  860. /* L110: */
  861. }
  862. /* L120: */
  863. }
  864. }
  865. if (*m > *k) {
  866. /* QR factorization of A( K+1:M,N-L+1:N ) */
  867. i__1 = *m - *k;
  868. dgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  869. work[1], info);
  870. if (wantu) {
  871. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  872. i__1 = *m - *k;
  873. /* Computing MIN */
  874. i__3 = *m - *k;
  875. i__2 = f2cmin(i__3,*l);
  876. dorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  877. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  878. 1], ldu, &work[1], info);
  879. }
  880. /* Clean up */
  881. i__1 = *n;
  882. for (j = *n - *l + 1; j <= i__1; ++j) {
  883. i__2 = *m;
  884. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  885. a[i__ + j * a_dim1] = 0.;
  886. /* L130: */
  887. }
  888. /* L140: */
  889. }
  890. }
  891. return 0;
  892. /* End of DGGSVP */
  893. } /* dggsvp_ */