You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctzrqf.c 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  191. #define d_log(x) (log(*(x)))
  192. #define d_mod(x, y) (fmod(*(x), *(y)))
  193. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  194. #define d_nint(x) u_nint(*(x))
  195. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  196. #define d_sign(a,b) u_sign(*(a),*(b))
  197. #define d_sin(x) (sin(*(x)))
  198. #define d_sinh(x) (sinh(*(x)))
  199. #define d_sqrt(x) (sqrt(*(x)))
  200. #define d_tan(x) (tan(*(x)))
  201. #define d_tanh(x) (tanh(*(x)))
  202. #define i_abs(x) abs(*(x))
  203. #define i_dnnt(x) ((integer)u_nint(*(x)))
  204. #define i_len(s, n) (n)
  205. #define i_nint(x) ((integer)u_nint(*(x)))
  206. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  207. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  208. #define pow_si(B,E) spow_ui(*(B),*(E))
  209. #define pow_di(B,E) dpow_ui(*(B),*(E))
  210. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  211. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  212. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  213. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  214. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  215. #define sig_die(s, kill) { exit(1); }
  216. #define s_stop(s, n) {exit(0);}
  217. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  218. #define z_abs(z) (cabs(Cd(z)))
  219. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  220. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  221. #define myexit_() break;
  222. #define mycycle() continue;
  223. #define myceiling(w) {ceil(w)}
  224. #define myhuge(w) {HUGE_VAL}
  225. #define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  226. /* procedure parameter types for -A and -C++ */
  227. #define F2C_proc_par_types 1
  228. #ifdef __cplusplus
  229. typedef logical (*L_fp)(...);
  230. #else
  231. typedef logical (*L_fp)();
  232. #endif
  233. static float spow_ui(float x, integer n) {
  234. float pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static double dpow_ui(double x, integer n) {
  246. double pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex float cpow_ui(_Complex float x, integer n) {
  258. _Complex float pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static _Complex double zpow_ui(_Complex double x, integer n) {
  270. _Complex double pow=1.0; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x = 1/x;
  273. for(u = n; ; ) {
  274. if(u & 01) pow *= x;
  275. if(u >>= 1) x *= x;
  276. else break;
  277. }
  278. }
  279. return pow;
  280. }
  281. static integer pow_ii(integer x, integer n) {
  282. integer pow; unsigned long int u;
  283. if (n <= 0) {
  284. if (n == 0 || x == 1) pow = 1;
  285. else if (x != -1) pow = x == 0 ? 1/x : 0;
  286. else n = -n;
  287. }
  288. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  289. u = n;
  290. for(pow = 1; ; ) {
  291. if(u & 01) pow *= x;
  292. if(u >>= 1) x *= x;
  293. else break;
  294. }
  295. }
  296. return pow;
  297. }
  298. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  299. {
  300. double m; integer i, mi;
  301. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  302. if (w[i-1]>m) mi=i ,m=w[i-1];
  303. return mi-s+1;
  304. }
  305. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  306. {
  307. float m; integer i, mi;
  308. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  309. if (w[i-1]>m) mi=i ,m=w[i-1];
  310. return mi-s+1;
  311. }
  312. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  313. integer n = *n_, incx = *incx_, incy = *incy_, i;
  314. _Complex float zdotc = 0.0;
  315. if (incx == 1 && incy == 1) {
  316. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  317. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  318. }
  319. } else {
  320. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  321. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  322. }
  323. }
  324. pCf(z) = zdotc;
  325. }
  326. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  327. integer n = *n_, incx = *incx_, incy = *incy_, i;
  328. _Complex double zdotc = 0.0;
  329. if (incx == 1 && incy == 1) {
  330. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  331. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  332. }
  333. } else {
  334. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  335. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  336. }
  337. }
  338. pCd(z) = zdotc;
  339. }
  340. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  341. integer n = *n_, incx = *incx_, incy = *incy_, i;
  342. _Complex float zdotc = 0.0;
  343. if (incx == 1 && incy == 1) {
  344. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  345. zdotc += Cf(&x[i]) * Cf(&y[i]);
  346. }
  347. } else {
  348. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  349. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  350. }
  351. }
  352. pCf(z) = zdotc;
  353. }
  354. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  355. integer n = *n_, incx = *incx_, incy = *incy_, i;
  356. _Complex double zdotc = 0.0;
  357. if (incx == 1 && incy == 1) {
  358. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  359. zdotc += Cd(&x[i]) * Cd(&y[i]);
  360. }
  361. } else {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  364. }
  365. }
  366. pCd(z) = zdotc;
  367. }
  368. #endif
  369. /* -- translated by f2c (version 20000121).
  370. You must link the resulting object file with the libraries:
  371. -lf2c -lm (in that order)
  372. */
  373. /* Table of constant values */
  374. static complex c_b1 = {1.f,0.f};
  375. static integer c__1 = 1;
  376. /* > \brief \b CTZRQF */
  377. /* =========== DOCUMENTATION =========== */
  378. /* Online html documentation available at */
  379. /* http://www.netlib.org/lapack/explore-html/ */
  380. /* > \htmlonly */
  381. /* > Download CTZRQF + dependencies */
  382. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrqf.
  383. f"> */
  384. /* > [TGZ]</a> */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrqf.
  386. f"> */
  387. /* > [ZIP]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrqf.
  389. f"> */
  390. /* > [TXT]</a> */
  391. /* > \endhtmlonly */
  392. /* Definition: */
  393. /* =========== */
  394. /* SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO ) */
  395. /* INTEGER INFO, LDA, M, N */
  396. /* COMPLEX A( LDA, * ), TAU( * ) */
  397. /* > \par Purpose: */
  398. /* ============= */
  399. /* > */
  400. /* > \verbatim */
  401. /* > */
  402. /* > This routine is deprecated and has been replaced by routine CTZRZF. */
  403. /* > */
  404. /* > CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */
  405. /* > to upper triangular form by means of unitary transformations. */
  406. /* > */
  407. /* > The upper trapezoidal matrix A is factored as */
  408. /* > */
  409. /* > A = ( R 0 ) * Z, */
  410. /* > */
  411. /* > where Z is an N-by-N unitary matrix and R is an M-by-M upper */
  412. /* > triangular matrix. */
  413. /* > \endverbatim */
  414. /* Arguments: */
  415. /* ========== */
  416. /* > \param[in] M */
  417. /* > \verbatim */
  418. /* > M is INTEGER */
  419. /* > The number of rows of the matrix A. M >= 0. */
  420. /* > \endverbatim */
  421. /* > */
  422. /* > \param[in] N */
  423. /* > \verbatim */
  424. /* > N is INTEGER */
  425. /* > The number of columns of the matrix A. N >= M. */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in,out] A */
  429. /* > \verbatim */
  430. /* > A is COMPLEX array, dimension (LDA,N) */
  431. /* > On entry, the leading M-by-N upper trapezoidal part of the */
  432. /* > array A must contain the matrix to be factorized. */
  433. /* > On exit, the leading M-by-M upper triangular part of A */
  434. /* > contains the upper triangular matrix R, and elements M+1 to */
  435. /* > N of the first M rows of A, with the array TAU, represent the */
  436. /* > unitary matrix Z as a product of M elementary reflectors. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] LDA */
  440. /* > \verbatim */
  441. /* > LDA is INTEGER */
  442. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[out] TAU */
  446. /* > \verbatim */
  447. /* > TAU is COMPLEX array, dimension (M) */
  448. /* > The scalar factors of the elementary reflectors. */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[out] INFO */
  452. /* > \verbatim */
  453. /* > INFO is INTEGER */
  454. /* > = 0: successful exit */
  455. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  456. /* > \endverbatim */
  457. /* Authors: */
  458. /* ======== */
  459. /* > \author Univ. of Tennessee */
  460. /* > \author Univ. of California Berkeley */
  461. /* > \author Univ. of Colorado Denver */
  462. /* > \author NAG Ltd. */
  463. /* > \date December 2016 */
  464. /* > \ingroup complexOTHERcomputational */
  465. /* > \par Further Details: */
  466. /* ===================== */
  467. /* > */
  468. /* > \verbatim */
  469. /* > */
  470. /* > The factorization is obtained by Householder's method. The kth */
  471. /* > transformation matrix, Z( k ), whose conjugate transpose is used to */
  472. /* > introduce zeros into the (m - k + 1)th row of A, is given in the form */
  473. /* > */
  474. /* > Z( k ) = ( I 0 ), */
  475. /* > ( 0 T( k ) ) */
  476. /* > */
  477. /* > where */
  478. /* > */
  479. /* > T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), */
  480. /* > ( 0 ) */
  481. /* > ( z( k ) ) */
  482. /* > */
  483. /* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
  484. /* > tau and z( k ) are chosen to annihilate the elements of the kth row */
  485. /* > of X. */
  486. /* > */
  487. /* > The scalar tau is returned in the kth element of TAU and the vector */
  488. /* > u( k ) in the kth row of A, such that the elements of z( k ) are */
  489. /* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
  490. /* > the upper triangular part of A. */
  491. /* > */
  492. /* > Z is given by */
  493. /* > */
  494. /* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
  495. /* > \endverbatim */
  496. /* > */
  497. /* ===================================================================== */
  498. /* Subroutine */ int ctzrqf_(integer *m, integer *n, complex *a, integer *lda,
  499. complex *tau, integer *info)
  500. {
  501. /* System generated locals */
  502. integer a_dim1, a_offset, i__1, i__2;
  503. complex q__1, q__2;
  504. /* Local variables */
  505. integer i__, k;
  506. extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
  507. complex *, integer *, complex *, integer *, complex *, integer *);
  508. complex alpha;
  509. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  510. , complex *, integer *, complex *, integer *, complex *, complex *
  511. , integer *), ccopy_(integer *, complex *, integer *,
  512. complex *, integer *), caxpy_(integer *, complex *, complex *,
  513. integer *, complex *, integer *);
  514. integer m1;
  515. extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
  516. integer *, complex *), clacgv_(integer *, complex *, integer *),
  517. xerbla_(char *, integer *);
  518. /* -- LAPACK computational routine (version 3.7.0) -- */
  519. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  520. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  521. /* December 2016 */
  522. /* ===================================================================== */
  523. /* Test the input parameters. */
  524. /* Parameter adjustments */
  525. a_dim1 = *lda;
  526. a_offset = 1 + a_dim1 * 1;
  527. a -= a_offset;
  528. --tau;
  529. /* Function Body */
  530. *info = 0;
  531. if (*m < 0) {
  532. *info = -1;
  533. } else if (*n < *m) {
  534. *info = -2;
  535. } else if (*lda < f2cmax(1,*m)) {
  536. *info = -4;
  537. }
  538. if (*info != 0) {
  539. i__1 = -(*info);
  540. xerbla_("CTZRQF", &i__1);
  541. return 0;
  542. }
  543. /* Perform the factorization. */
  544. if (*m == 0) {
  545. return 0;
  546. }
  547. if (*m == *n) {
  548. i__1 = *n;
  549. for (i__ = 1; i__ <= i__1; ++i__) {
  550. i__2 = i__;
  551. tau[i__2].r = 0.f, tau[i__2].i = 0.f;
  552. /* L10: */
  553. }
  554. } else {
  555. /* Computing MIN */
  556. i__1 = *m + 1;
  557. m1 = f2cmin(i__1,*n);
  558. for (k = *m; k >= 1; --k) {
  559. /* Use a Householder reflection to zero the kth row of A. */
  560. /* First set up the reflection. */
  561. i__1 = k + k * a_dim1;
  562. r_cnjg(&q__1, &a[k + k * a_dim1]);
  563. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  564. i__1 = *n - *m;
  565. clacgv_(&i__1, &a[k + m1 * a_dim1], lda);
  566. i__1 = k + k * a_dim1;
  567. alpha.r = a[i__1].r, alpha.i = a[i__1].i;
  568. i__1 = *n - *m + 1;
  569. clarfg_(&i__1, &alpha, &a[k + m1 * a_dim1], lda, &tau[k]);
  570. i__1 = k + k * a_dim1;
  571. a[i__1].r = alpha.r, a[i__1].i = alpha.i;
  572. i__1 = k;
  573. r_cnjg(&q__1, &tau[k]);
  574. tau[i__1].r = q__1.r, tau[i__1].i = q__1.i;
  575. i__1 = k;
  576. if ((tau[i__1].r != 0.f || tau[i__1].i != 0.f) && k > 1) {
  577. /* We now perform the operation A := A*P( k )**H. */
  578. /* Use the first ( k - 1 ) elements of TAU to store a( k ), */
  579. /* where a( k ) consists of the first ( k - 1 ) elements of */
  580. /* the kth column of A. Also let B denote the first */
  581. /* ( k - 1 ) rows of the last ( n - m ) columns of A. */
  582. i__1 = k - 1;
  583. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
  584. /* Form w = a( k ) + B*z( k ) in TAU. */
  585. i__1 = k - 1;
  586. i__2 = *n - *m;
  587. cgemv_("No transpose", &i__1, &i__2, &c_b1, &a[m1 * a_dim1 +
  588. 1], lda, &a[k + m1 * a_dim1], lda, &c_b1, &tau[1], &
  589. c__1);
  590. /* Now form a( k ) := a( k ) - conjg(tau)*w */
  591. /* and B := B - conjg(tau)*w*z( k )**H. */
  592. i__1 = k - 1;
  593. r_cnjg(&q__2, &tau[k]);
  594. q__1.r = -q__2.r, q__1.i = -q__2.i;
  595. caxpy_(&i__1, &q__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
  596. c__1);
  597. i__1 = k - 1;
  598. i__2 = *n - *m;
  599. r_cnjg(&q__2, &tau[k]);
  600. q__1.r = -q__2.r, q__1.i = -q__2.i;
  601. cgerc_(&i__1, &i__2, &q__1, &tau[1], &c__1, &a[k + m1 *
  602. a_dim1], lda, &a[m1 * a_dim1 + 1], lda);
  603. }
  604. /* L20: */
  605. }
  606. }
  607. return 0;
  608. /* End of CTZRQF */
  609. } /* ctzrqf_ */