You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrttf.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b ZTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full pa
  484. cked format (TF). */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download ZTRTTF + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrttf.
  491. f"> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrttf.
  494. f"> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrttf.
  497. f"> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE ZTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO ) */
  503. /* CHARACTER TRANSR, UPLO */
  504. /* INTEGER INFO, N, LDA */
  505. /* COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * ) */
  506. /* > \par Purpose: */
  507. /* ============= */
  508. /* > */
  509. /* > \verbatim */
  510. /* > */
  511. /* > ZTRTTF copies a triangular matrix A from standard full format (TR) */
  512. /* > to rectangular full packed format (TF) . */
  513. /* > \endverbatim */
  514. /* Arguments: */
  515. /* ========== */
  516. /* > \param[in] TRANSR */
  517. /* > \verbatim */
  518. /* > TRANSR is CHARACTER*1 */
  519. /* > = 'N': ARF in Normal mode is wanted; */
  520. /* > = 'C': ARF in Conjugate Transpose mode is wanted; */
  521. /* > \endverbatim */
  522. /* > */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > = 'U': A is upper triangular; */
  527. /* > = 'L': A is lower triangular. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The order of the matrix A. N >= 0. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] A */
  537. /* > \verbatim */
  538. /* > A is COMPLEX*16 array, dimension ( LDA, N ) */
  539. /* > On entry, the triangular matrix A. If UPLO = 'U', the */
  540. /* > leading N-by-N upper triangular part of the array A contains */
  541. /* > the upper triangular matrix, and the strictly lower */
  542. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  543. /* > leading N-by-N lower triangular part of the array A contains */
  544. /* > the lower triangular matrix, and the strictly upper */
  545. /* > triangular part of A is not referenced. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] LDA */
  549. /* > \verbatim */
  550. /* > LDA is INTEGER */
  551. /* > The leading dimension of the matrix A. LDA >= f2cmax(1,N). */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[out] ARF */
  555. /* > \verbatim */
  556. /* > ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
  557. /* > On exit, the upper or lower triangular matrix A stored in */
  558. /* > RFP format. For a further discussion see Notes below. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[out] INFO */
  562. /* > \verbatim */
  563. /* > INFO is INTEGER */
  564. /* > = 0: successful exit */
  565. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  566. /* > \endverbatim */
  567. /* Authors: */
  568. /* ======== */
  569. /* > \author Univ. of Tennessee */
  570. /* > \author Univ. of California Berkeley */
  571. /* > \author Univ. of Colorado Denver */
  572. /* > \author NAG Ltd. */
  573. /* > \date December 2016 */
  574. /* > \ingroup complex16OTHERcomputational */
  575. /* > \par Further Details: */
  576. /* ===================== */
  577. /* > */
  578. /* > \verbatim */
  579. /* > */
  580. /* > We first consider Standard Packed Format when N is even. */
  581. /* > We give an example where N = 6. */
  582. /* > */
  583. /* > AP is Upper AP is Lower */
  584. /* > */
  585. /* > 00 01 02 03 04 05 00 */
  586. /* > 11 12 13 14 15 10 11 */
  587. /* > 22 23 24 25 20 21 22 */
  588. /* > 33 34 35 30 31 32 33 */
  589. /* > 44 45 40 41 42 43 44 */
  590. /* > 55 50 51 52 53 54 55 */
  591. /* > */
  592. /* > */
  593. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  594. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  595. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  596. /* > conjugate-transpose of the first three columns of AP upper. */
  597. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  598. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  599. /* > conjugate-transpose of the last three columns of AP lower. */
  600. /* > To denote conjugate we place -- above the element. This covers the */
  601. /* > case N even and TRANSR = 'N'. */
  602. /* > */
  603. /* > RFP A RFP A */
  604. /* > */
  605. /* > -- -- -- */
  606. /* > 03 04 05 33 43 53 */
  607. /* > -- -- */
  608. /* > 13 14 15 00 44 54 */
  609. /* > -- */
  610. /* > 23 24 25 10 11 55 */
  611. /* > */
  612. /* > 33 34 35 20 21 22 */
  613. /* > -- */
  614. /* > 00 44 45 30 31 32 */
  615. /* > -- -- */
  616. /* > 01 11 55 40 41 42 */
  617. /* > -- -- -- */
  618. /* > 02 12 22 50 51 52 */
  619. /* > */
  620. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  621. /* > transpose of RFP A above. One therefore gets: */
  622. /* > */
  623. /* > */
  624. /* > RFP A RFP A */
  625. /* > */
  626. /* > -- -- -- -- -- -- -- -- -- -- */
  627. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  628. /* > -- -- -- -- -- -- -- -- -- -- */
  629. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  630. /* > -- -- -- -- -- -- -- -- -- -- */
  631. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  632. /* > */
  633. /* > */
  634. /* > We next consider Standard Packed Format when N is odd. */
  635. /* > We give an example where N = 5. */
  636. /* > */
  637. /* > AP is Upper AP is Lower */
  638. /* > */
  639. /* > 00 01 02 03 04 00 */
  640. /* > 11 12 13 14 10 11 */
  641. /* > 22 23 24 20 21 22 */
  642. /* > 33 34 30 31 32 33 */
  643. /* > 44 40 41 42 43 44 */
  644. /* > */
  645. /* > */
  646. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  647. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  648. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  649. /* > conjugate-transpose of the first two columns of AP upper. */
  650. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  651. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  652. /* > conjugate-transpose of the last two columns of AP lower. */
  653. /* > To denote conjugate we place -- above the element. This covers the */
  654. /* > case N odd and TRANSR = 'N'. */
  655. /* > */
  656. /* > RFP A RFP A */
  657. /* > */
  658. /* > -- -- */
  659. /* > 02 03 04 00 33 43 */
  660. /* > -- */
  661. /* > 12 13 14 10 11 44 */
  662. /* > */
  663. /* > 22 23 24 20 21 22 */
  664. /* > -- */
  665. /* > 00 33 34 30 31 32 */
  666. /* > -- -- */
  667. /* > 01 11 44 40 41 42 */
  668. /* > */
  669. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  670. /* > transpose of RFP A above. One therefore gets: */
  671. /* > */
  672. /* > */
  673. /* > RFP A RFP A */
  674. /* > */
  675. /* > -- -- -- -- -- -- -- -- -- */
  676. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  677. /* > -- -- -- -- -- -- -- -- -- */
  678. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  679. /* > -- -- -- -- -- -- -- -- -- */
  680. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  681. /* > \endverbatim */
  682. /* > */
  683. /* ===================================================================== */
  684. /* Subroutine */ void ztrttf_(char *transr, char *uplo, integer *n,
  685. doublecomplex *a, integer *lda, doublecomplex *arf, integer *info)
  686. {
  687. /* System generated locals */
  688. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  689. doublecomplex z__1;
  690. /* Local variables */
  691. integer np1x2, i__, j, k, l;
  692. logical normaltransr;
  693. extern logical lsame_(char *, char *);
  694. logical lower;
  695. integer n1, n2, ij, nt;
  696. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  697. logical nisodd;
  698. integer nx2;
  699. /* -- LAPACK computational routine (version 3.7.0) -- */
  700. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  701. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  702. /* December 2016 */
  703. /* ===================================================================== */
  704. /* Test the input parameters. */
  705. /* Parameter adjustments */
  706. a_dim1 = *lda - 1 - 0 + 1;
  707. a_offset = 0 + a_dim1 * 0;
  708. a -= a_offset;
  709. /* Function Body */
  710. *info = 0;
  711. normaltransr = lsame_(transr, "N");
  712. lower = lsame_(uplo, "L");
  713. if (! normaltransr && ! lsame_(transr, "C")) {
  714. *info = -1;
  715. } else if (! lower && ! lsame_(uplo, "U")) {
  716. *info = -2;
  717. } else if (*n < 0) {
  718. *info = -3;
  719. } else if (*lda < f2cmax(1,*n)) {
  720. *info = -5;
  721. }
  722. if (*info != 0) {
  723. i__1 = -(*info);
  724. xerbla_("ZTRTTF", &i__1, (ftnlen)6);
  725. return;
  726. }
  727. /* Quick return if possible */
  728. if (*n <= 1) {
  729. if (*n == 1) {
  730. if (normaltransr) {
  731. arf[0].r = a[0].r, arf[0].i = a[0].i;
  732. } else {
  733. d_cnjg(&z__1, a);
  734. arf[0].r = z__1.r, arf[0].i = z__1.i;
  735. }
  736. }
  737. return;
  738. }
  739. /* Size of array ARF(1:2,0:nt-1) */
  740. nt = *n * (*n + 1) / 2;
  741. /* set N1 and N2 depending on LOWER: for N even N1=N2=K */
  742. if (lower) {
  743. n2 = *n / 2;
  744. n1 = *n - n2;
  745. } else {
  746. n1 = *n / 2;
  747. n2 = *n - n1;
  748. }
  749. /* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */
  750. /* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */
  751. /* N--by--(N+1)/2. */
  752. if (*n % 2 == 0) {
  753. k = *n / 2;
  754. nisodd = FALSE_;
  755. if (! lower) {
  756. np1x2 = *n + *n + 2;
  757. }
  758. } else {
  759. nisodd = TRUE_;
  760. if (! lower) {
  761. nx2 = *n + *n;
  762. }
  763. }
  764. if (nisodd) {
  765. /* N is odd */
  766. if (normaltransr) {
  767. /* N is odd and TRANSR = 'N' */
  768. if (lower) {
  769. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  770. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  771. /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */
  772. ij = 0;
  773. i__1 = n2;
  774. for (j = 0; j <= i__1; ++j) {
  775. i__2 = n2 + j;
  776. for (i__ = n1; i__ <= i__2; ++i__) {
  777. i__3 = ij;
  778. d_cnjg(&z__1, &a[n2 + j + i__ * a_dim1]);
  779. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  780. ++ij;
  781. }
  782. i__2 = *n - 1;
  783. for (i__ = j; i__ <= i__2; ++i__) {
  784. i__3 = ij;
  785. i__4 = i__ + j * a_dim1;
  786. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  787. ++ij;
  788. }
  789. }
  790. } else {
  791. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  792. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  793. /* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */
  794. ij = nt - *n;
  795. i__1 = n1;
  796. for (j = *n - 1; j >= i__1; --j) {
  797. i__2 = j;
  798. for (i__ = 0; i__ <= i__2; ++i__) {
  799. i__3 = ij;
  800. i__4 = i__ + j * a_dim1;
  801. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  802. ++ij;
  803. }
  804. i__2 = n1 - 1;
  805. for (l = j - n1; l <= i__2; ++l) {
  806. i__3 = ij;
  807. d_cnjg(&z__1, &a[j - n1 + l * a_dim1]);
  808. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  809. ++ij;
  810. }
  811. ij -= nx2;
  812. }
  813. }
  814. } else {
  815. /* N is odd and TRANSR = 'C' */
  816. if (lower) {
  817. /* SRPA for LOWER, TRANSPOSE and N is odd */
  818. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  819. /* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */
  820. ij = 0;
  821. i__1 = n2 - 1;
  822. for (j = 0; j <= i__1; ++j) {
  823. i__2 = j;
  824. for (i__ = 0; i__ <= i__2; ++i__) {
  825. i__3 = ij;
  826. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  827. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  828. ++ij;
  829. }
  830. i__2 = *n - 1;
  831. for (i__ = n1 + j; i__ <= i__2; ++i__) {
  832. i__3 = ij;
  833. i__4 = i__ + (n1 + j) * a_dim1;
  834. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  835. ++ij;
  836. }
  837. }
  838. i__1 = *n - 1;
  839. for (j = n2; j <= i__1; ++j) {
  840. i__2 = n1 - 1;
  841. for (i__ = 0; i__ <= i__2; ++i__) {
  842. i__3 = ij;
  843. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  844. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  845. ++ij;
  846. }
  847. }
  848. } else {
  849. /* SRPA for UPPER, TRANSPOSE and N is odd */
  850. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  851. /* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2 */
  852. ij = 0;
  853. i__1 = n1;
  854. for (j = 0; j <= i__1; ++j) {
  855. i__2 = *n - 1;
  856. for (i__ = n1; i__ <= i__2; ++i__) {
  857. i__3 = ij;
  858. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  859. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  860. ++ij;
  861. }
  862. }
  863. i__1 = n1 - 1;
  864. for (j = 0; j <= i__1; ++j) {
  865. i__2 = j;
  866. for (i__ = 0; i__ <= i__2; ++i__) {
  867. i__3 = ij;
  868. i__4 = i__ + j * a_dim1;
  869. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  870. ++ij;
  871. }
  872. i__2 = *n - 1;
  873. for (l = n2 + j; l <= i__2; ++l) {
  874. i__3 = ij;
  875. d_cnjg(&z__1, &a[n2 + j + l * a_dim1]);
  876. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  877. ++ij;
  878. }
  879. }
  880. }
  881. }
  882. } else {
  883. /* N is even */
  884. if (normaltransr) {
  885. /* N is even and TRANSR = 'N' */
  886. if (lower) {
  887. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  888. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  889. /* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */
  890. ij = 0;
  891. i__1 = k - 1;
  892. for (j = 0; j <= i__1; ++j) {
  893. i__2 = k + j;
  894. for (i__ = k; i__ <= i__2; ++i__) {
  895. i__3 = ij;
  896. d_cnjg(&z__1, &a[k + j + i__ * a_dim1]);
  897. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  898. ++ij;
  899. }
  900. i__2 = *n - 1;
  901. for (i__ = j; i__ <= i__2; ++i__) {
  902. i__3 = ij;
  903. i__4 = i__ + j * a_dim1;
  904. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  905. ++ij;
  906. }
  907. }
  908. } else {
  909. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  910. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  911. /* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */
  912. ij = nt - *n - 1;
  913. i__1 = k;
  914. for (j = *n - 1; j >= i__1; --j) {
  915. i__2 = j;
  916. for (i__ = 0; i__ <= i__2; ++i__) {
  917. i__3 = ij;
  918. i__4 = i__ + j * a_dim1;
  919. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  920. ++ij;
  921. }
  922. i__2 = k - 1;
  923. for (l = j - k; l <= i__2; ++l) {
  924. i__3 = ij;
  925. d_cnjg(&z__1, &a[j - k + l * a_dim1]);
  926. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  927. ++ij;
  928. }
  929. ij -= np1x2;
  930. }
  931. }
  932. } else {
  933. /* N is even and TRANSR = 'C' */
  934. if (lower) {
  935. /* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */
  936. /* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */
  937. /* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */
  938. ij = 0;
  939. j = k;
  940. i__1 = *n - 1;
  941. for (i__ = k; i__ <= i__1; ++i__) {
  942. i__2 = ij;
  943. i__3 = i__ + j * a_dim1;
  944. arf[i__2].r = a[i__3].r, arf[i__2].i = a[i__3].i;
  945. ++ij;
  946. }
  947. i__1 = k - 2;
  948. for (j = 0; j <= i__1; ++j) {
  949. i__2 = j;
  950. for (i__ = 0; i__ <= i__2; ++i__) {
  951. i__3 = ij;
  952. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  953. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  954. ++ij;
  955. }
  956. i__2 = *n - 1;
  957. for (i__ = k + 1 + j; i__ <= i__2; ++i__) {
  958. i__3 = ij;
  959. i__4 = i__ + (k + 1 + j) * a_dim1;
  960. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  961. ++ij;
  962. }
  963. }
  964. i__1 = *n - 1;
  965. for (j = k - 1; j <= i__1; ++j) {
  966. i__2 = k - 1;
  967. for (i__ = 0; i__ <= i__2; ++i__) {
  968. i__3 = ij;
  969. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  970. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  971. ++ij;
  972. }
  973. }
  974. } else {
  975. /* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */
  976. /* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */
  977. /* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */
  978. ij = 0;
  979. i__1 = k;
  980. for (j = 0; j <= i__1; ++j) {
  981. i__2 = *n - 1;
  982. for (i__ = k; i__ <= i__2; ++i__) {
  983. i__3 = ij;
  984. d_cnjg(&z__1, &a[j + i__ * a_dim1]);
  985. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  986. ++ij;
  987. }
  988. }
  989. i__1 = k - 2;
  990. for (j = 0; j <= i__1; ++j) {
  991. i__2 = j;
  992. for (i__ = 0; i__ <= i__2; ++i__) {
  993. i__3 = ij;
  994. i__4 = i__ + j * a_dim1;
  995. arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
  996. ++ij;
  997. }
  998. i__2 = *n - 1;
  999. for (l = k + 1 + j; l <= i__2; ++l) {
  1000. i__3 = ij;
  1001. d_cnjg(&z__1, &a[k + 1 + j + l * a_dim1]);
  1002. arf[i__3].r = z__1.r, arf[i__3].i = z__1.i;
  1003. ++ij;
  1004. }
  1005. }
  1006. /* Note that here J = K-1 */
  1007. i__1 = j;
  1008. for (i__ = 0; i__ <= i__1; ++i__) {
  1009. i__2 = ij;
  1010. i__3 = i__ + j * a_dim1;
  1011. arf[i__2].r = a[i__3].r, arf[i__2].i = a[i__3].i;
  1012. ++ij;
  1013. }
  1014. }
  1015. }
  1016. }
  1017. return;
  1018. /* End of ZTRTTF */
  1019. } /* ztrttf_ */