You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztbrfs.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b ZTBRFS */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download ZTBRFS + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztbrfs.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztbrfs.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztbrfs.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, */
  504. /* LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) */
  505. /* CHARACTER DIAG, TRANS, UPLO */
  506. /* INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS */
  507. /* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) */
  508. /* COMPLEX*16 AB( LDAB, * ), B( LDB, * ), WORK( * ), */
  509. /* $ X( LDX, * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZTBRFS provides error bounds and backward error estimates for the */
  516. /* > solution to a system of linear equations with a triangular band */
  517. /* > coefficient matrix. */
  518. /* > */
  519. /* > The solution matrix X must be computed by ZTBTRS or some other */
  520. /* > means before entering this routine. ZTBRFS does not do iterative */
  521. /* > refinement because doing so cannot improve the backward error. */
  522. /* > \endverbatim */
  523. /* Arguments: */
  524. /* ========== */
  525. /* > \param[in] UPLO */
  526. /* > \verbatim */
  527. /* > UPLO is CHARACTER*1 */
  528. /* > = 'U': A is upper triangular; */
  529. /* > = 'L': A is lower triangular. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] TRANS */
  533. /* > \verbatim */
  534. /* > TRANS is CHARACTER*1 */
  535. /* > Specifies the form of the system of equations: */
  536. /* > = 'N': A * X = B (No transpose) */
  537. /* > = 'T': A**T * X = B (Transpose) */
  538. /* > = 'C': A**H * X = B (Conjugate transpose) */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] DIAG */
  542. /* > \verbatim */
  543. /* > DIAG is CHARACTER*1 */
  544. /* > = 'N': A is non-unit triangular; */
  545. /* > = 'U': A is unit triangular. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] N */
  549. /* > \verbatim */
  550. /* > N is INTEGER */
  551. /* > The order of the matrix A. N >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] KD */
  555. /* > \verbatim */
  556. /* > KD is INTEGER */
  557. /* > The number of superdiagonals or subdiagonals of the */
  558. /* > triangular band matrix A. KD >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] NRHS */
  562. /* > \verbatim */
  563. /* > NRHS is INTEGER */
  564. /* > The number of right hand sides, i.e., the number of columns */
  565. /* > of the matrices B and X. NRHS >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] AB */
  569. /* > \verbatim */
  570. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  571. /* > The upper or lower triangular band matrix A, stored in the */
  572. /* > first kd+1 rows of the array. The j-th column of A is stored */
  573. /* > in the j-th column of the array AB as follows: */
  574. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  575. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  576. /* > If DIAG = 'U', the diagonal elements of A are not referenced */
  577. /* > and are assumed to be 1. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDAB */
  581. /* > \verbatim */
  582. /* > LDAB is INTEGER */
  583. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] B */
  587. /* > \verbatim */
  588. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  589. /* > The right hand side matrix B. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDB */
  593. /* > \verbatim */
  594. /* > LDB is INTEGER */
  595. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] X */
  599. /* > \verbatim */
  600. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  601. /* > The solution matrix X. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] LDX */
  605. /* > \verbatim */
  606. /* > LDX is INTEGER */
  607. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] FERR */
  611. /* > \verbatim */
  612. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  613. /* > The estimated forward error bound for each solution vector */
  614. /* > X(j) (the j-th column of the solution matrix X). */
  615. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  616. /* > is an estimated upper bound for the magnitude of the largest */
  617. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  618. /* > largest element in X(j). The estimate is as reliable as */
  619. /* > the estimate for RCOND, and is almost always a slight */
  620. /* > overestimate of the true error. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] BERR */
  624. /* > \verbatim */
  625. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  626. /* > The componentwise relative backward error of each solution */
  627. /* > vector X(j) (i.e., the smallest relative change in */
  628. /* > any element of A or B that makes X(j) an exact solution). */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] WORK */
  632. /* > \verbatim */
  633. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] RWORK */
  637. /* > \verbatim */
  638. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] INFO */
  642. /* > \verbatim */
  643. /* > INFO is INTEGER */
  644. /* > = 0: successful exit */
  645. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  646. /* > \endverbatim */
  647. /* Authors: */
  648. /* ======== */
  649. /* > \author Univ. of Tennessee */
  650. /* > \author Univ. of California Berkeley */
  651. /* > \author Univ. of Colorado Denver */
  652. /* > \author NAG Ltd. */
  653. /* > \date December 2016 */
  654. /* > \ingroup complex16OTHERcomputational */
  655. /* ===================================================================== */
  656. /* Subroutine */ void ztbrfs_(char *uplo, char *trans, char *diag, integer *n,
  657. integer *kd, integer *nrhs, doublecomplex *ab, integer *ldab,
  658. doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
  659. doublereal *ferr, doublereal *berr, doublecomplex *work, doublereal *
  660. rwork, integer *info)
  661. {
  662. /* System generated locals */
  663. integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1,
  664. i__2, i__3, i__4, i__5;
  665. doublereal d__1, d__2, d__3, d__4;
  666. doublecomplex z__1;
  667. /* Local variables */
  668. integer kase;
  669. doublereal safe1, safe2;
  670. integer i__, j, k;
  671. doublereal s;
  672. extern logical lsame_(char *, char *);
  673. integer isave[3];
  674. logical upper;
  675. extern /* Subroutine */ void ztbmv_(char *, char *, char *, integer *,
  676. integer *, doublecomplex *, integer *, doublecomplex *, integer *), zcopy_(integer *, doublecomplex *,
  677. integer *, doublecomplex *, integer *), ztbsv_(char *, char *,
  678. char *, integer *, integer *, doublecomplex *, integer *,
  679. doublecomplex *, integer *), zaxpy_(
  680. integer *, doublecomplex *, doublecomplex *, integer *,
  681. doublecomplex *, integer *), zlacn2_(integer *, doublecomplex *,
  682. doublecomplex *, doublereal *, integer *, integer *);
  683. extern doublereal dlamch_(char *);
  684. doublereal xk;
  685. integer nz;
  686. doublereal safmin;
  687. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  688. logical notran;
  689. char transn[1], transt[1];
  690. logical nounit;
  691. doublereal lstres, eps;
  692. /* -- LAPACK computational routine (version 3.7.0) -- */
  693. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  694. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  695. /* December 2016 */
  696. /* ===================================================================== */
  697. /* Test the input parameters. */
  698. /* Parameter adjustments */
  699. ab_dim1 = *ldab;
  700. ab_offset = 1 + ab_dim1 * 1;
  701. ab -= ab_offset;
  702. b_dim1 = *ldb;
  703. b_offset = 1 + b_dim1 * 1;
  704. b -= b_offset;
  705. x_dim1 = *ldx;
  706. x_offset = 1 + x_dim1 * 1;
  707. x -= x_offset;
  708. --ferr;
  709. --berr;
  710. --work;
  711. --rwork;
  712. /* Function Body */
  713. *info = 0;
  714. upper = lsame_(uplo, "U");
  715. notran = lsame_(trans, "N");
  716. nounit = lsame_(diag, "N");
  717. if (! upper && ! lsame_(uplo, "L")) {
  718. *info = -1;
  719. } else if (! notran && ! lsame_(trans, "T") && !
  720. lsame_(trans, "C")) {
  721. *info = -2;
  722. } else if (! nounit && ! lsame_(diag, "U")) {
  723. *info = -3;
  724. } else if (*n < 0) {
  725. *info = -4;
  726. } else if (*kd < 0) {
  727. *info = -5;
  728. } else if (*nrhs < 0) {
  729. *info = -6;
  730. } else if (*ldab < *kd + 1) {
  731. *info = -8;
  732. } else if (*ldb < f2cmax(1,*n)) {
  733. *info = -10;
  734. } else if (*ldx < f2cmax(1,*n)) {
  735. *info = -12;
  736. }
  737. if (*info != 0) {
  738. i__1 = -(*info);
  739. xerbla_("ZTBRFS", &i__1, (ftnlen)6);
  740. return;
  741. }
  742. /* Quick return if possible */
  743. if (*n == 0 || *nrhs == 0) {
  744. i__1 = *nrhs;
  745. for (j = 1; j <= i__1; ++j) {
  746. ferr[j] = 0.;
  747. berr[j] = 0.;
  748. /* L10: */
  749. }
  750. return;
  751. }
  752. if (notran) {
  753. *(unsigned char *)transn = 'N';
  754. *(unsigned char *)transt = 'C';
  755. } else {
  756. *(unsigned char *)transn = 'C';
  757. *(unsigned char *)transt = 'N';
  758. }
  759. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  760. nz = *kd + 2;
  761. eps = dlamch_("Epsilon");
  762. safmin = dlamch_("Safe minimum");
  763. safe1 = nz * safmin;
  764. safe2 = safe1 / eps;
  765. /* Do for each right hand side */
  766. i__1 = *nrhs;
  767. for (j = 1; j <= i__1; ++j) {
  768. /* Compute residual R = B - op(A) * X, */
  769. /* where op(A) = A, A**T, or A**H, depending on TRANS. */
  770. zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
  771. ztbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
  772. c__1);
  773. z__1.r = -1., z__1.i = 0.;
  774. zaxpy_(n, &z__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  775. /* Compute componentwise relative backward error from formula */
  776. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  777. /* where abs(Z) is the componentwise absolute value of the matrix */
  778. /* or vector Z. If the i-th component of the denominator is less */
  779. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  780. /* numerator and denominator before dividing. */
  781. i__2 = *n;
  782. for (i__ = 1; i__ <= i__2; ++i__) {
  783. i__3 = i__ + j * b_dim1;
  784. rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
  785. i__ + j * b_dim1]), abs(d__2));
  786. /* L20: */
  787. }
  788. if (notran) {
  789. /* Compute abs(A)*abs(X) + abs(B). */
  790. if (upper) {
  791. if (nounit) {
  792. i__2 = *n;
  793. for (k = 1; k <= i__2; ++k) {
  794. i__3 = k + j * x_dim1;
  795. xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&
  796. x[k + j * x_dim1]), abs(d__2));
  797. /* Computing MAX */
  798. i__3 = 1, i__4 = k - *kd;
  799. i__5 = k;
  800. for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
  801. i__3 = *kd + 1 + i__ - k + k * ab_dim1;
  802. rwork[i__] += ((d__1 = ab[i__3].r, abs(d__1)) + (
  803. d__2 = d_imag(&ab[*kd + 1 + i__ - k + k *
  804. ab_dim1]), abs(d__2))) * xk;
  805. /* L30: */
  806. }
  807. /* L40: */
  808. }
  809. } else {
  810. i__2 = *n;
  811. for (k = 1; k <= i__2; ++k) {
  812. i__5 = k + j * x_dim1;
  813. xk = (d__1 = x[i__5].r, abs(d__1)) + (d__2 = d_imag(&
  814. x[k + j * x_dim1]), abs(d__2));
  815. /* Computing MAX */
  816. i__5 = 1, i__3 = k - *kd;
  817. i__4 = k - 1;
  818. for (i__ = f2cmax(i__5,i__3); i__ <= i__4; ++i__) {
  819. i__5 = *kd + 1 + i__ - k + k * ab_dim1;
  820. rwork[i__] += ((d__1 = ab[i__5].r, abs(d__1)) + (
  821. d__2 = d_imag(&ab[*kd + 1 + i__ - k + k *
  822. ab_dim1]), abs(d__2))) * xk;
  823. /* L50: */
  824. }
  825. rwork[k] += xk;
  826. /* L60: */
  827. }
  828. }
  829. } else {
  830. if (nounit) {
  831. i__2 = *n;
  832. for (k = 1; k <= i__2; ++k) {
  833. i__4 = k + j * x_dim1;
  834. xk = (d__1 = x[i__4].r, abs(d__1)) + (d__2 = d_imag(&
  835. x[k + j * x_dim1]), abs(d__2));
  836. /* Computing MIN */
  837. i__5 = *n, i__3 = k + *kd;
  838. i__4 = f2cmin(i__5,i__3);
  839. for (i__ = k; i__ <= i__4; ++i__) {
  840. i__5 = i__ + 1 - k + k * ab_dim1;
  841. rwork[i__] += ((d__1 = ab[i__5].r, abs(d__1)) + (
  842. d__2 = d_imag(&ab[i__ + 1 - k + k *
  843. ab_dim1]), abs(d__2))) * xk;
  844. /* L70: */
  845. }
  846. /* L80: */
  847. }
  848. } else {
  849. i__2 = *n;
  850. for (k = 1; k <= i__2; ++k) {
  851. i__4 = k + j * x_dim1;
  852. xk = (d__1 = x[i__4].r, abs(d__1)) + (d__2 = d_imag(&
  853. x[k + j * x_dim1]), abs(d__2));
  854. /* Computing MIN */
  855. i__5 = *n, i__3 = k + *kd;
  856. i__4 = f2cmin(i__5,i__3);
  857. for (i__ = k + 1; i__ <= i__4; ++i__) {
  858. i__5 = i__ + 1 - k + k * ab_dim1;
  859. rwork[i__] += ((d__1 = ab[i__5].r, abs(d__1)) + (
  860. d__2 = d_imag(&ab[i__ + 1 - k + k *
  861. ab_dim1]), abs(d__2))) * xk;
  862. /* L90: */
  863. }
  864. rwork[k] += xk;
  865. /* L100: */
  866. }
  867. }
  868. }
  869. } else {
  870. /* Compute abs(A**H)*abs(X) + abs(B). */
  871. if (upper) {
  872. if (nounit) {
  873. i__2 = *n;
  874. for (k = 1; k <= i__2; ++k) {
  875. s = 0.;
  876. /* Computing MAX */
  877. i__4 = 1, i__5 = k - *kd;
  878. i__3 = k;
  879. for (i__ = f2cmax(i__4,i__5); i__ <= i__3; ++i__) {
  880. i__4 = *kd + 1 + i__ - k + k * ab_dim1;
  881. i__5 = i__ + j * x_dim1;
  882. s += ((d__1 = ab[i__4].r, abs(d__1)) + (d__2 =
  883. d_imag(&ab[*kd + 1 + i__ - k + k *
  884. ab_dim1]), abs(d__2))) * ((d__3 = x[i__5]
  885. .r, abs(d__3)) + (d__4 = d_imag(&x[i__ +
  886. j * x_dim1]), abs(d__4)));
  887. /* L110: */
  888. }
  889. rwork[k] += s;
  890. /* L120: */
  891. }
  892. } else {
  893. i__2 = *n;
  894. for (k = 1; k <= i__2; ++k) {
  895. i__3 = k + j * x_dim1;
  896. s = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[
  897. k + j * x_dim1]), abs(d__2));
  898. /* Computing MAX */
  899. i__3 = 1, i__4 = k - *kd;
  900. i__5 = k - 1;
  901. for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
  902. i__3 = *kd + 1 + i__ - k + k * ab_dim1;
  903. i__4 = i__ + j * x_dim1;
  904. s += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  905. d_imag(&ab[*kd + 1 + i__ - k + k *
  906. ab_dim1]), abs(d__2))) * ((d__3 = x[i__4]
  907. .r, abs(d__3)) + (d__4 = d_imag(&x[i__ +
  908. j * x_dim1]), abs(d__4)));
  909. /* L130: */
  910. }
  911. rwork[k] += s;
  912. /* L140: */
  913. }
  914. }
  915. } else {
  916. if (nounit) {
  917. i__2 = *n;
  918. for (k = 1; k <= i__2; ++k) {
  919. s = 0.;
  920. /* Computing MIN */
  921. i__3 = *n, i__4 = k + *kd;
  922. i__5 = f2cmin(i__3,i__4);
  923. for (i__ = k; i__ <= i__5; ++i__) {
  924. i__3 = i__ + 1 - k + k * ab_dim1;
  925. i__4 = i__ + j * x_dim1;
  926. s += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  927. d_imag(&ab[i__ + 1 - k + k * ab_dim1]),
  928. abs(d__2))) * ((d__3 = x[i__4].r, abs(
  929. d__3)) + (d__4 = d_imag(&x[i__ + j *
  930. x_dim1]), abs(d__4)));
  931. /* L150: */
  932. }
  933. rwork[k] += s;
  934. /* L160: */
  935. }
  936. } else {
  937. i__2 = *n;
  938. for (k = 1; k <= i__2; ++k) {
  939. i__5 = k + j * x_dim1;
  940. s = (d__1 = x[i__5].r, abs(d__1)) + (d__2 = d_imag(&x[
  941. k + j * x_dim1]), abs(d__2));
  942. /* Computing MIN */
  943. i__3 = *n, i__4 = k + *kd;
  944. i__5 = f2cmin(i__3,i__4);
  945. for (i__ = k + 1; i__ <= i__5; ++i__) {
  946. i__3 = i__ + 1 - k + k * ab_dim1;
  947. i__4 = i__ + j * x_dim1;
  948. s += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  949. d_imag(&ab[i__ + 1 - k + k * ab_dim1]),
  950. abs(d__2))) * ((d__3 = x[i__4].r, abs(
  951. d__3)) + (d__4 = d_imag(&x[i__ + j *
  952. x_dim1]), abs(d__4)));
  953. /* L170: */
  954. }
  955. rwork[k] += s;
  956. /* L180: */
  957. }
  958. }
  959. }
  960. }
  961. s = 0.;
  962. i__2 = *n;
  963. for (i__ = 1; i__ <= i__2; ++i__) {
  964. if (rwork[i__] > safe2) {
  965. /* Computing MAX */
  966. i__5 = i__;
  967. d__3 = s, d__4 = ((d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  968. d_imag(&work[i__]), abs(d__2))) / rwork[i__];
  969. s = f2cmax(d__3,d__4);
  970. } else {
  971. /* Computing MAX */
  972. i__5 = i__;
  973. d__3 = s, d__4 = ((d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  974. d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
  975. + safe1);
  976. s = f2cmax(d__3,d__4);
  977. }
  978. /* L190: */
  979. }
  980. berr[j] = s;
  981. /* Bound error from formula */
  982. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  983. /* norm( abs(inv(op(A)))* */
  984. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  985. /* where */
  986. /* norm(Z) is the magnitude of the largest component of Z */
  987. /* inv(op(A)) is the inverse of op(A) */
  988. /* abs(Z) is the componentwise absolute value of the matrix or */
  989. /* vector Z */
  990. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  991. /* EPS is machine epsilon */
  992. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  993. /* is incremented by SAFE1 if the i-th component of */
  994. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  995. /* Use ZLACN2 to estimate the infinity-norm of the matrix */
  996. /* inv(op(A)) * diag(W), */
  997. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  998. i__2 = *n;
  999. for (i__ = 1; i__ <= i__2; ++i__) {
  1000. if (rwork[i__] > safe2) {
  1001. i__5 = i__;
  1002. rwork[i__] = (d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  1003. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  1004. ;
  1005. } else {
  1006. i__5 = i__;
  1007. rwork[i__] = (d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  1008. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  1009. + safe1;
  1010. }
  1011. /* L200: */
  1012. }
  1013. kase = 0;
  1014. L210:
  1015. zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  1016. if (kase != 0) {
  1017. if (kase == 1) {
  1018. /* Multiply by diag(W)*inv(op(A)**H). */
  1019. ztbsv_(uplo, transt, diag, n, kd, &ab[ab_offset], ldab, &work[
  1020. 1], &c__1);
  1021. i__2 = *n;
  1022. for (i__ = 1; i__ <= i__2; ++i__) {
  1023. i__5 = i__;
  1024. i__3 = i__;
  1025. i__4 = i__;
  1026. z__1.r = rwork[i__3] * work[i__4].r, z__1.i = rwork[i__3]
  1027. * work[i__4].i;
  1028. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  1029. /* L220: */
  1030. }
  1031. } else {
  1032. /* Multiply by inv(op(A))*diag(W). */
  1033. i__2 = *n;
  1034. for (i__ = 1; i__ <= i__2; ++i__) {
  1035. i__5 = i__;
  1036. i__3 = i__;
  1037. i__4 = i__;
  1038. z__1.r = rwork[i__3] * work[i__4].r, z__1.i = rwork[i__3]
  1039. * work[i__4].i;
  1040. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  1041. /* L230: */
  1042. }
  1043. ztbsv_(uplo, transn, diag, n, kd, &ab[ab_offset], ldab, &work[
  1044. 1], &c__1);
  1045. }
  1046. goto L210;
  1047. }
  1048. /* Normalize error. */
  1049. lstres = 0.;
  1050. i__2 = *n;
  1051. for (i__ = 1; i__ <= i__2; ++i__) {
  1052. /* Computing MAX */
  1053. i__5 = i__ + j * x_dim1;
  1054. d__3 = lstres, d__4 = (d__1 = x[i__5].r, abs(d__1)) + (d__2 =
  1055. d_imag(&x[i__ + j * x_dim1]), abs(d__2));
  1056. lstres = f2cmax(d__3,d__4);
  1057. /* L240: */
  1058. }
  1059. if (lstres != 0.) {
  1060. ferr[j] /= lstres;
  1061. }
  1062. /* L250: */
  1063. }
  1064. return;
  1065. /* End of ZTBRFS */
  1066. } /* ztbrfs_ */