You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptri.c 29 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static doublecomplex c_b2 = {0.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZSPTRI */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZSPTRI + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, N */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX*16 AP( * ), WORK( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZSPTRI computes the inverse of a complex symmetric indefinite matrix */
  516. /* > A in packed storage using the factorization A = U*D*U**T or */
  517. /* > A = L*D*L**T computed by ZSPTRF. */
  518. /* > \endverbatim */
  519. /* Arguments: */
  520. /* ========== */
  521. /* > \param[in] UPLO */
  522. /* > \verbatim */
  523. /* > UPLO is CHARACTER*1 */
  524. /* > Specifies whether the details of the factorization are stored */
  525. /* > as an upper or lower triangular matrix. */
  526. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  527. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The order of the matrix A. N >= 0. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in,out] AP */
  537. /* > \verbatim */
  538. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  539. /* > On entry, the block diagonal matrix D and the multipliers */
  540. /* > used to obtain the factor U or L as computed by ZSPTRF, */
  541. /* > stored as a packed triangular matrix. */
  542. /* > */
  543. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  544. /* > matrix, stored as a packed triangular matrix. The j-th column */
  545. /* > of inv(A) is stored in the array AP as follows: */
  546. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
  547. /* > if UPLO = 'L', */
  548. /* > AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] IPIV */
  552. /* > \verbatim */
  553. /* > IPIV is INTEGER array, dimension (N) */
  554. /* > Details of the interchanges and the block structure of D */
  555. /* > as determined by ZSPTRF. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[out] WORK */
  559. /* > \verbatim */
  560. /* > WORK is COMPLEX*16 array, dimension (N) */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] INFO */
  564. /* > \verbatim */
  565. /* > INFO is INTEGER */
  566. /* > = 0: successful exit */
  567. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  568. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  569. /* > inverse could not be computed. */
  570. /* > \endverbatim */
  571. /* Authors: */
  572. /* ======== */
  573. /* > \author Univ. of Tennessee */
  574. /* > \author Univ. of California Berkeley */
  575. /* > \author Univ. of Colorado Denver */
  576. /* > \author NAG Ltd. */
  577. /* > \date December 2016 */
  578. /* > \ingroup complex16OTHERcomputational */
  579. /* ===================================================================== */
  580. /* Subroutine */ void zsptri_(char *uplo, integer *n, doublecomplex *ap,
  581. integer *ipiv, doublecomplex *work, integer *info)
  582. {
  583. /* System generated locals */
  584. integer i__1, i__2, i__3;
  585. doublecomplex z__1, z__2, z__3;
  586. /* Local variables */
  587. doublecomplex temp, akkp1, d__;
  588. integer j, k;
  589. doublecomplex t;
  590. extern logical lsame_(char *, char *);
  591. integer kstep;
  592. logical upper;
  593. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  594. doublecomplex *, integer *);
  595. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  596. doublecomplex *, integer *, doublecomplex *, integer *);
  597. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  598. doublecomplex *, integer *), zspmv_(char *, integer *,
  599. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  600. doublecomplex *, doublecomplex *, integer *);
  601. doublecomplex ak;
  602. integer kc, kp, kx;
  603. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  604. integer kcnext, kpc, npp;
  605. doublecomplex akp1;
  606. /* -- LAPACK computational routine (version 3.7.0) -- */
  607. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  608. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  609. /* December 2016 */
  610. /* ===================================================================== */
  611. /* Test the input parameters. */
  612. /* Parameter adjustments */
  613. --work;
  614. --ipiv;
  615. --ap;
  616. /* Function Body */
  617. *info = 0;
  618. upper = lsame_(uplo, "U");
  619. if (! upper && ! lsame_(uplo, "L")) {
  620. *info = -1;
  621. } else if (*n < 0) {
  622. *info = -2;
  623. }
  624. if (*info != 0) {
  625. i__1 = -(*info);
  626. xerbla_("ZSPTRI", &i__1, (ftnlen)6);
  627. return;
  628. }
  629. /* Quick return if possible */
  630. if (*n == 0) {
  631. return;
  632. }
  633. /* Check that the diagonal matrix D is nonsingular. */
  634. if (upper) {
  635. /* Upper triangular storage: examine D from bottom to top */
  636. kp = *n * (*n + 1) / 2;
  637. for (*info = *n; *info >= 1; --(*info)) {
  638. i__1 = kp;
  639. if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) {
  640. return;
  641. }
  642. kp -= *info;
  643. /* L10: */
  644. }
  645. } else {
  646. /* Lower triangular storage: examine D from top to bottom. */
  647. kp = 1;
  648. i__1 = *n;
  649. for (*info = 1; *info <= i__1; ++(*info)) {
  650. i__2 = kp;
  651. if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) {
  652. return;
  653. }
  654. kp = kp + *n - *info + 1;
  655. /* L20: */
  656. }
  657. }
  658. *info = 0;
  659. if (upper) {
  660. /* Compute inv(A) from the factorization A = U*D*U**T. */
  661. /* K is the main loop index, increasing from 1 to N in steps of */
  662. /* 1 or 2, depending on the size of the diagonal blocks. */
  663. k = 1;
  664. kc = 1;
  665. L30:
  666. /* If K > N, exit from loop. */
  667. if (k > *n) {
  668. goto L50;
  669. }
  670. kcnext = kc + k;
  671. if (ipiv[k] > 0) {
  672. /* 1 x 1 diagonal block */
  673. /* Invert the diagonal block. */
  674. i__1 = kc + k - 1;
  675. z_div(&z__1, &c_b1, &ap[kc + k - 1]);
  676. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  677. /* Compute column K of the inverse. */
  678. if (k > 1) {
  679. i__1 = k - 1;
  680. zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  681. i__1 = k - 1;
  682. z__1.r = -1., z__1.i = 0.;
  683. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  684. ap[kc], &c__1);
  685. i__1 = kc + k - 1;
  686. i__2 = kc + k - 1;
  687. i__3 = k - 1;
  688. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  689. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  690. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  691. }
  692. kstep = 1;
  693. } else {
  694. /* 2 x 2 diagonal block */
  695. /* Invert the diagonal block. */
  696. i__1 = kcnext + k - 1;
  697. t.r = ap[i__1].r, t.i = ap[i__1].i;
  698. z_div(&z__1, &ap[kc + k - 1], &t);
  699. ak.r = z__1.r, ak.i = z__1.i;
  700. z_div(&z__1, &ap[kcnext + k], &t);
  701. akp1.r = z__1.r, akp1.i = z__1.i;
  702. z_div(&z__1, &ap[kcnext + k - 1], &t);
  703. akkp1.r = z__1.r, akkp1.i = z__1.i;
  704. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  705. ak.i * akp1.r;
  706. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  707. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  708. * z__2.r;
  709. d__.r = z__1.r, d__.i = z__1.i;
  710. i__1 = kc + k - 1;
  711. z_div(&z__1, &akp1, &d__);
  712. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  713. i__1 = kcnext + k;
  714. z_div(&z__1, &ak, &d__);
  715. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  716. i__1 = kcnext + k - 1;
  717. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  718. z_div(&z__1, &z__2, &d__);
  719. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  720. /* Compute columns K and K+1 of the inverse. */
  721. if (k > 1) {
  722. i__1 = k - 1;
  723. zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  724. i__1 = k - 1;
  725. z__1.r = -1., z__1.i = 0.;
  726. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  727. ap[kc], &c__1);
  728. i__1 = kc + k - 1;
  729. i__2 = kc + k - 1;
  730. i__3 = k - 1;
  731. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  732. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  733. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  734. i__1 = kcnext + k - 1;
  735. i__2 = kcnext + k - 1;
  736. i__3 = k - 1;
  737. zdotu_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1);
  738. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  739. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  740. i__1 = k - 1;
  741. zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
  742. i__1 = k - 1;
  743. z__1.r = -1., z__1.i = 0.;
  744. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  745. ap[kcnext], &c__1);
  746. i__1 = kcnext + k;
  747. i__2 = kcnext + k;
  748. i__3 = k - 1;
  749. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1);
  750. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  751. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  752. }
  753. kstep = 2;
  754. kcnext = kcnext + k + 1;
  755. }
  756. kp = (i__1 = ipiv[k], abs(i__1));
  757. if (kp != k) {
  758. /* Interchange rows and columns K and KP in the leading */
  759. /* submatrix A(1:k+1,1:k+1) */
  760. kpc = (kp - 1) * kp / 2 + 1;
  761. i__1 = kp - 1;
  762. zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
  763. kx = kpc + kp - 1;
  764. i__1 = k - 1;
  765. for (j = kp + 1; j <= i__1; ++j) {
  766. kx = kx + j - 1;
  767. i__2 = kc + j - 1;
  768. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  769. i__2 = kc + j - 1;
  770. i__3 = kx;
  771. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  772. i__2 = kx;
  773. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  774. /* L40: */
  775. }
  776. i__1 = kc + k - 1;
  777. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  778. i__1 = kc + k - 1;
  779. i__2 = kpc + kp - 1;
  780. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  781. i__1 = kpc + kp - 1;
  782. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  783. if (kstep == 2) {
  784. i__1 = kc + k + k - 1;
  785. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  786. i__1 = kc + k + k - 1;
  787. i__2 = kc + k + kp - 1;
  788. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  789. i__1 = kc + k + kp - 1;
  790. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  791. }
  792. }
  793. k += kstep;
  794. kc = kcnext;
  795. goto L30;
  796. L50:
  797. ;
  798. } else {
  799. /* Compute inv(A) from the factorization A = L*D*L**T. */
  800. /* K is the main loop index, increasing from 1 to N in steps of */
  801. /* 1 or 2, depending on the size of the diagonal blocks. */
  802. npp = *n * (*n + 1) / 2;
  803. k = *n;
  804. kc = npp;
  805. L60:
  806. /* If K < 1, exit from loop. */
  807. if (k < 1) {
  808. goto L80;
  809. }
  810. kcnext = kc - (*n - k + 2);
  811. if (ipiv[k] > 0) {
  812. /* 1 x 1 diagonal block */
  813. /* Invert the diagonal block. */
  814. i__1 = kc;
  815. z_div(&z__1, &c_b1, &ap[kc]);
  816. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  817. /* Compute column K of the inverse. */
  818. if (k < *n) {
  819. i__1 = *n - k;
  820. zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  821. i__1 = *n - k;
  822. z__1.r = -1., z__1.i = 0.;
  823. zspmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], &
  824. c__1, &c_b2, &ap[kc + 1], &c__1);
  825. i__1 = kc;
  826. i__2 = kc;
  827. i__3 = *n - k;
  828. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  829. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  830. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  831. }
  832. kstep = 1;
  833. } else {
  834. /* 2 x 2 diagonal block */
  835. /* Invert the diagonal block. */
  836. i__1 = kcnext + 1;
  837. t.r = ap[i__1].r, t.i = ap[i__1].i;
  838. z_div(&z__1, &ap[kcnext], &t);
  839. ak.r = z__1.r, ak.i = z__1.i;
  840. z_div(&z__1, &ap[kc], &t);
  841. akp1.r = z__1.r, akp1.i = z__1.i;
  842. z_div(&z__1, &ap[kcnext + 1], &t);
  843. akkp1.r = z__1.r, akkp1.i = z__1.i;
  844. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  845. ak.i * akp1.r;
  846. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  847. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  848. * z__2.r;
  849. d__.r = z__1.r, d__.i = z__1.i;
  850. i__1 = kcnext;
  851. z_div(&z__1, &akp1, &d__);
  852. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  853. i__1 = kc;
  854. z_div(&z__1, &ak, &d__);
  855. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  856. i__1 = kcnext + 1;
  857. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  858. z_div(&z__1, &z__2, &d__);
  859. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  860. /* Compute columns K-1 and K of the inverse. */
  861. if (k < *n) {
  862. i__1 = *n - k;
  863. zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  864. i__1 = *n - k;
  865. z__1.r = -1., z__1.i = 0.;
  866. zspmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
  867. c__1, &c_b2, &ap[kc + 1], &c__1);
  868. i__1 = kc;
  869. i__2 = kc;
  870. i__3 = *n - k;
  871. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  872. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  873. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  874. i__1 = kcnext + 1;
  875. i__2 = kcnext + 1;
  876. i__3 = *n - k;
  877. zdotu_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], &
  878. c__1);
  879. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  880. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  881. i__1 = *n - k;
  882. zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
  883. i__1 = *n - k;
  884. z__1.r = -1., z__1.i = 0.;
  885. zspmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
  886. c__1, &c_b2, &ap[kcnext + 2], &c__1);
  887. i__1 = kcnext;
  888. i__2 = kcnext;
  889. i__3 = *n - k;
  890. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1);
  891. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  892. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  893. }
  894. kstep = 2;
  895. kcnext -= *n - k + 3;
  896. }
  897. kp = (i__1 = ipiv[k], abs(i__1));
  898. if (kp != k) {
  899. /* Interchange rows and columns K and KP in the trailing */
  900. /* submatrix A(k-1:n,k-1:n) */
  901. kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
  902. if (kp < *n) {
  903. i__1 = *n - kp;
  904. zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
  905. c__1);
  906. }
  907. kx = kc + kp - k;
  908. i__1 = kp - 1;
  909. for (j = k + 1; j <= i__1; ++j) {
  910. kx = kx + *n - j + 1;
  911. i__2 = kc + j - k;
  912. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  913. i__2 = kc + j - k;
  914. i__3 = kx;
  915. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  916. i__2 = kx;
  917. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  918. /* L70: */
  919. }
  920. i__1 = kc;
  921. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  922. i__1 = kc;
  923. i__2 = kpc;
  924. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  925. i__1 = kpc;
  926. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  927. if (kstep == 2) {
  928. i__1 = kc - *n + k - 1;
  929. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  930. i__1 = kc - *n + k - 1;
  931. i__2 = kc - *n + kp - 1;
  932. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  933. i__1 = kc - *n + kp - 1;
  934. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  935. }
  936. }
  937. k -= kstep;
  938. kc = kcnext;
  939. goto L60;
  940. L80:
  941. ;
  942. }
  943. return;
  944. /* End of ZSPTRI */
  945. } /* zsptri_ */