You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpbtrf.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. static integer c_n1 = -1;
  487. static doublereal c_b21 = -1.;
  488. static doublereal c_b22 = 1.;
  489. static integer c__33 = 33;
  490. /* > \brief \b ZPBTRF */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZPBTRF + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtrf.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtrf.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtrf.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, KD, LDAB, N */
  511. /* COMPLEX*16 AB( LDAB, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZPBTRF computes the Cholesky factorization of a complex Hermitian */
  518. /* > positive definite band matrix A. */
  519. /* > */
  520. /* > The factorization has the form */
  521. /* > A = U**H * U, if UPLO = 'U', or */
  522. /* > A = L * L**H, if UPLO = 'L', */
  523. /* > where U is an upper triangular matrix and L is lower triangular. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] UPLO */
  528. /* > \verbatim */
  529. /* > UPLO is CHARACTER*1 */
  530. /* > = 'U': Upper triangle of A is stored; */
  531. /* > = 'L': Lower triangle of A is stored. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] N */
  535. /* > \verbatim */
  536. /* > N is INTEGER */
  537. /* > The order of the matrix A. N >= 0. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] KD */
  541. /* > \verbatim */
  542. /* > KD is INTEGER */
  543. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  544. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] AB */
  548. /* > \verbatim */
  549. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  550. /* > On entry, the upper or lower triangle of the Hermitian band */
  551. /* > matrix A, stored in the first KD+1 rows of the array. The */
  552. /* > j-th column of A is stored in the j-th column of the array AB */
  553. /* > as follows: */
  554. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  555. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  556. /* > */
  557. /* > On exit, if INFO = 0, the triangular factor U or L from the */
  558. /* > Cholesky factorization A = U**H*U or A = L*L**H of the band */
  559. /* > matrix A, in the same storage format as A. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] LDAB */
  563. /* > \verbatim */
  564. /* > LDAB is INTEGER */
  565. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] INFO */
  569. /* > \verbatim */
  570. /* > INFO is INTEGER */
  571. /* > = 0: successful exit */
  572. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  573. /* > > 0: if INFO = i, the leading minor of order i is not */
  574. /* > positive definite, and the factorization could not be */
  575. /* > completed. */
  576. /* > \endverbatim */
  577. /* Authors: */
  578. /* ======== */
  579. /* > \author Univ. of Tennessee */
  580. /* > \author Univ. of California Berkeley */
  581. /* > \author Univ. of Colorado Denver */
  582. /* > \author NAG Ltd. */
  583. /* > \date December 2016 */
  584. /* > \ingroup complex16OTHERcomputational */
  585. /* > \par Further Details: */
  586. /* ===================== */
  587. /* > */
  588. /* > \verbatim */
  589. /* > */
  590. /* > The band storage scheme is illustrated by the following example, when */
  591. /* > N = 6, KD = 2, and UPLO = 'U': */
  592. /* > */
  593. /* > On entry: On exit: */
  594. /* > */
  595. /* > * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
  596. /* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
  597. /* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
  598. /* > */
  599. /* > Similarly, if UPLO = 'L' the format of A is as follows: */
  600. /* > */
  601. /* > On entry: On exit: */
  602. /* > */
  603. /* > a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
  604. /* > a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
  605. /* > a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
  606. /* > */
  607. /* > Array elements marked * are not used by the routine. */
  608. /* > \endverbatim */
  609. /* > \par Contributors: */
  610. /* ================== */
  611. /* > */
  612. /* > Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */
  613. /* ===================================================================== */
  614. /* Subroutine */ void zpbtrf_(char *uplo, integer *n, integer *kd,
  615. doublecomplex *ab, integer *ldab, integer *info)
  616. {
  617. /* System generated locals */
  618. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  619. doublecomplex z__1;
  620. /* Local variables */
  621. doublecomplex work[1056] /* was [33][32] */;
  622. integer i__, j;
  623. extern logical lsame_(char *, char *);
  624. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  625. integer *, doublecomplex *, doublecomplex *, integer *,
  626. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  627. integer *), zherk_(char *, char *, integer *,
  628. integer *, doublereal *, doublecomplex *, integer *, doublereal *,
  629. doublecomplex *, integer *);
  630. integer i2, i3;
  631. extern /* Subroutine */ void ztrsm_(char *, char *, char *, char *,
  632. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  633. doublecomplex *, integer *),
  634. zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *,
  635. integer *);
  636. integer ib, nb, ii, jj;
  637. extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *,
  638. integer *, integer *);
  639. extern int xerbla_(char *, integer *, ftnlen);
  640. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  641. integer *, integer *, ftnlen, ftnlen);
  642. /* -- LAPACK computational routine (version 3.7.0) -- */
  643. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  644. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  645. /* December 2016 */
  646. /* ===================================================================== */
  647. /* Test the input parameters. */
  648. /* Parameter adjustments */
  649. ab_dim1 = *ldab;
  650. ab_offset = 1 + ab_dim1 * 1;
  651. ab -= ab_offset;
  652. /* Function Body */
  653. *info = 0;
  654. if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
  655. *info = -1;
  656. } else if (*n < 0) {
  657. *info = -2;
  658. } else if (*kd < 0) {
  659. *info = -3;
  660. } else if (*ldab < *kd + 1) {
  661. *info = -5;
  662. }
  663. if (*info != 0) {
  664. i__1 = -(*info);
  665. xerbla_("ZPBTRF", &i__1, (ftnlen)6);
  666. return;
  667. }
  668. /* Quick return if possible */
  669. if (*n == 0) {
  670. return;
  671. }
  672. /* Determine the block size for this environment */
  673. nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, (
  674. ftnlen)1);
  675. /* The block size must not exceed the semi-bandwidth KD, and must not */
  676. /* exceed the limit set by the size of the local array WORK. */
  677. nb = f2cmin(nb,32);
  678. if (nb <= 1 || nb > *kd) {
  679. /* Use unblocked code */
  680. zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
  681. } else {
  682. /* Use blocked code */
  683. if (lsame_(uplo, "U")) {
  684. /* Compute the Cholesky factorization of a Hermitian band */
  685. /* matrix, given the upper triangle of the matrix in band */
  686. /* storage. */
  687. /* Zero the upper triangle of the work array. */
  688. i__1 = nb;
  689. for (j = 1; j <= i__1; ++j) {
  690. i__2 = j - 1;
  691. for (i__ = 1; i__ <= i__2; ++i__) {
  692. i__3 = i__ + j * 33 - 34;
  693. work[i__3].r = 0., work[i__3].i = 0.;
  694. /* L10: */
  695. }
  696. /* L20: */
  697. }
  698. /* Process the band matrix one diagonal block at a time. */
  699. i__1 = *n;
  700. i__2 = nb;
  701. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  702. /* Computing MIN */
  703. i__3 = nb, i__4 = *n - i__ + 1;
  704. ib = f2cmin(i__3,i__4);
  705. /* Factorize the diagonal block */
  706. i__3 = *ldab - 1;
  707. zpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
  708. if (ii != 0) {
  709. *info = i__ + ii - 1;
  710. goto L150;
  711. }
  712. if (i__ + ib <= *n) {
  713. /* Update the relevant part of the trailing submatrix. */
  714. /* If A11 denotes the diagonal block which has just been */
  715. /* factorized, then we need to update the remaining */
  716. /* blocks in the diagram: */
  717. /* A11 A12 A13 */
  718. /* A22 A23 */
  719. /* A33 */
  720. /* The numbers of rows and columns in the partitioning */
  721. /* are IB, I2, I3 respectively. The blocks A12, A22 and */
  722. /* A23 are empty if IB = KD. The upper triangle of A13 */
  723. /* lies outside the band. */
  724. /* Computing MIN */
  725. i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
  726. i2 = f2cmin(i__3,i__4);
  727. /* Computing MIN */
  728. i__3 = ib, i__4 = *n - i__ - *kd + 1;
  729. i3 = f2cmin(i__3,i__4);
  730. if (i2 > 0) {
  731. /* Update A12 */
  732. i__3 = *ldab - 1;
  733. i__4 = *ldab - 1;
  734. ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
  735. "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ *
  736. ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib)
  737. * ab_dim1], &i__4);
  738. /* Update A22 */
  739. i__3 = *ldab - 1;
  740. i__4 = *ldab - 1;
  741. zherk_("Upper", "Conjugate transpose", &i2, &ib, &
  742. c_b21, &ab[*kd + 1 - ib + (i__ + ib) *
  743. ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ +
  744. ib) * ab_dim1], &i__4);
  745. }
  746. if (i3 > 0) {
  747. /* Copy the lower triangle of A13 into the work array. */
  748. i__3 = i3;
  749. for (jj = 1; jj <= i__3; ++jj) {
  750. i__4 = ib;
  751. for (ii = jj; ii <= i__4; ++ii) {
  752. i__5 = ii + jj * 33 - 34;
  753. i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) *
  754. ab_dim1;
  755. work[i__5].r = ab[i__6].r, work[i__5].i = ab[
  756. i__6].i;
  757. /* L30: */
  758. }
  759. /* L40: */
  760. }
  761. /* Update A13 (in the work array). */
  762. i__3 = *ldab - 1;
  763. ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
  764. "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ *
  765. ab_dim1], &i__3, work, &c__33);
  766. /* Update A23 */
  767. if (i2 > 0) {
  768. z__1.r = -1., z__1.i = 0.;
  769. i__3 = *ldab - 1;
  770. i__4 = *ldab - 1;
  771. zgemm_("Conjugate transpose", "No transpose", &i2,
  772. &i3, &ib, &z__1, &ab[*kd + 1 - ib + (i__
  773. + ib) * ab_dim1], &i__3, work, &c__33, &
  774. c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1],
  775. &i__4);
  776. }
  777. /* Update A33 */
  778. i__3 = *ldab - 1;
  779. zherk_("Upper", "Conjugate transpose", &i3, &ib, &
  780. c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + (
  781. i__ + *kd) * ab_dim1], &i__3);
  782. /* Copy the lower triangle of A13 back into place. */
  783. i__3 = i3;
  784. for (jj = 1; jj <= i__3; ++jj) {
  785. i__4 = ib;
  786. for (ii = jj; ii <= i__4; ++ii) {
  787. i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) *
  788. ab_dim1;
  789. i__6 = ii + jj * 33 - 34;
  790. ab[i__5].r = work[i__6].r, ab[i__5].i = work[
  791. i__6].i;
  792. /* L50: */
  793. }
  794. /* L60: */
  795. }
  796. }
  797. }
  798. /* L70: */
  799. }
  800. } else {
  801. /* Compute the Cholesky factorization of a Hermitian band */
  802. /* matrix, given the lower triangle of the matrix in band */
  803. /* storage. */
  804. /* Zero the lower triangle of the work array. */
  805. i__2 = nb;
  806. for (j = 1; j <= i__2; ++j) {
  807. i__1 = nb;
  808. for (i__ = j + 1; i__ <= i__1; ++i__) {
  809. i__3 = i__ + j * 33 - 34;
  810. work[i__3].r = 0., work[i__3].i = 0.;
  811. /* L80: */
  812. }
  813. /* L90: */
  814. }
  815. /* Process the band matrix one diagonal block at a time. */
  816. i__2 = *n;
  817. i__1 = nb;
  818. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  819. /* Computing MIN */
  820. i__3 = nb, i__4 = *n - i__ + 1;
  821. ib = f2cmin(i__3,i__4);
  822. /* Factorize the diagonal block */
  823. i__3 = *ldab - 1;
  824. zpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
  825. if (ii != 0) {
  826. *info = i__ + ii - 1;
  827. goto L150;
  828. }
  829. if (i__ + ib <= *n) {
  830. /* Update the relevant part of the trailing submatrix. */
  831. /* If A11 denotes the diagonal block which has just been */
  832. /* factorized, then we need to update the remaining */
  833. /* blocks in the diagram: */
  834. /* A11 */
  835. /* A21 A22 */
  836. /* A31 A32 A33 */
  837. /* The numbers of rows and columns in the partitioning */
  838. /* are IB, I2, I3 respectively. The blocks A21, A22 and */
  839. /* A32 are empty if IB = KD. The lower triangle of A31 */
  840. /* lies outside the band. */
  841. /* Computing MIN */
  842. i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
  843. i2 = f2cmin(i__3,i__4);
  844. /* Computing MIN */
  845. i__3 = ib, i__4 = *n - i__ - *kd + 1;
  846. i3 = f2cmin(i__3,i__4);
  847. if (i2 > 0) {
  848. /* Update A21 */
  849. i__3 = *ldab - 1;
  850. i__4 = *ldab - 1;
  851. ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
  852. "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 +
  853. 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4);
  854. /* Update A22 */
  855. i__3 = *ldab - 1;
  856. i__4 = *ldab - 1;
  857. zherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[
  858. ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[(
  859. i__ + ib) * ab_dim1 + 1], &i__4);
  860. }
  861. if (i3 > 0) {
  862. /* Copy the upper triangle of A31 into the work array. */
  863. i__3 = ib;
  864. for (jj = 1; jj <= i__3; ++jj) {
  865. i__4 = f2cmin(jj,i3);
  866. for (ii = 1; ii <= i__4; ++ii) {
  867. i__5 = ii + jj * 33 - 34;
  868. i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) *
  869. ab_dim1;
  870. work[i__5].r = ab[i__6].r, work[i__5].i = ab[
  871. i__6].i;
  872. /* L100: */
  873. }
  874. /* L110: */
  875. }
  876. /* Update A31 (in the work array). */
  877. i__3 = *ldab - 1;
  878. ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
  879. "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 +
  880. 1], &i__3, work, &c__33);
  881. /* Update A32 */
  882. if (i2 > 0) {
  883. z__1.r = -1., z__1.i = 0.;
  884. i__3 = *ldab - 1;
  885. i__4 = *ldab - 1;
  886. zgemm_("No transpose", "Conjugate transpose", &i3,
  887. &i2, &ib, &z__1, work, &c__33, &ab[ib +
  888. 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd
  889. + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
  890. }
  891. /* Update A33 */
  892. i__3 = *ldab - 1;
  893. zherk_("Lower", "No transpose", &i3, &ib, &c_b21,
  894. work, &c__33, &c_b22, &ab[(i__ + *kd) *
  895. ab_dim1 + 1], &i__3);
  896. /* Copy the upper triangle of A31 back into place. */
  897. i__3 = ib;
  898. for (jj = 1; jj <= i__3; ++jj) {
  899. i__4 = f2cmin(jj,i3);
  900. for (ii = 1; ii <= i__4; ++ii) {
  901. i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) *
  902. ab_dim1;
  903. i__6 = ii + jj * 33 - 34;
  904. ab[i__5].r = work[i__6].r, ab[i__5].i = work[
  905. i__6].i;
  906. /* L120: */
  907. }
  908. /* L130: */
  909. }
  910. }
  911. }
  912. /* L140: */
  913. }
  914. }
  915. }
  916. return;
  917. L150:
  918. return;
  919. /* End of ZPBTRF */
  920. } /* zpbtrf_ */