You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhsein.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static logical c_false = FALSE_;
  485. static logical c_true = TRUE_;
  486. /* > \brief \b ZHSEIN */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download ZHSEIN + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhsein.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhsein.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhsein.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, */
  505. /* LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, */
  506. /* IFAILR, INFO ) */
  507. /* CHARACTER EIGSRC, INITV, SIDE */
  508. /* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
  509. /* LOGICAL SELECT( * ) */
  510. /* INTEGER IFAILL( * ), IFAILR( * ) */
  511. /* DOUBLE PRECISION RWORK( * ) */
  512. /* COMPLEX*16 H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
  513. /* $ W( * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZHSEIN uses inverse iteration to find specified right and/or left */
  520. /* > eigenvectors of a complex upper Hessenberg matrix H. */
  521. /* > */
  522. /* > The right eigenvector x and the left eigenvector y of the matrix H */
  523. /* > corresponding to an eigenvalue w are defined by: */
  524. /* > */
  525. /* > H * x = w * x, y**h * H = w * y**h */
  526. /* > */
  527. /* > where y**h denotes the conjugate transpose of the vector y. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] SIDE */
  532. /* > \verbatim */
  533. /* > SIDE is CHARACTER*1 */
  534. /* > = 'R': compute right eigenvectors only; */
  535. /* > = 'L': compute left eigenvectors only; */
  536. /* > = 'B': compute both right and left eigenvectors. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] EIGSRC */
  540. /* > \verbatim */
  541. /* > EIGSRC is CHARACTER*1 */
  542. /* > Specifies the source of eigenvalues supplied in W: */
  543. /* > = 'Q': the eigenvalues were found using ZHSEQR; thus, if */
  544. /* > H has zero subdiagonal elements, and so is */
  545. /* > block-triangular, then the j-th eigenvalue can be */
  546. /* > assumed to be an eigenvalue of the block containing */
  547. /* > the j-th row/column. This property allows ZHSEIN to */
  548. /* > perform inverse iteration on just one diagonal block. */
  549. /* > = 'N': no assumptions are made on the correspondence */
  550. /* > between eigenvalues and diagonal blocks. In this */
  551. /* > case, ZHSEIN must always perform inverse iteration */
  552. /* > using the whole matrix H. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] INITV */
  556. /* > \verbatim */
  557. /* > INITV is CHARACTER*1 */
  558. /* > = 'N': no initial vectors are supplied; */
  559. /* > = 'U': user-supplied initial vectors are stored in the arrays */
  560. /* > VL and/or VR. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] SELECT */
  564. /* > \verbatim */
  565. /* > SELECT is LOGICAL array, dimension (N) */
  566. /* > Specifies the eigenvectors to be computed. To select the */
  567. /* > eigenvector corresponding to the eigenvalue W(j), */
  568. /* > SELECT(j) must be set to .TRUE.. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] N */
  572. /* > \verbatim */
  573. /* > N is INTEGER */
  574. /* > The order of the matrix H. N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] H */
  578. /* > \verbatim */
  579. /* > H is COMPLEX*16 array, dimension (LDH,N) */
  580. /* > The upper Hessenberg matrix H. */
  581. /* > If a NaN is detected in H, the routine will return with INFO=-6. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDH */
  585. /* > \verbatim */
  586. /* > LDH is INTEGER */
  587. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] W */
  591. /* > \verbatim */
  592. /* > W is COMPLEX*16 array, dimension (N) */
  593. /* > On entry, the eigenvalues of H. */
  594. /* > On exit, the real parts of W may have been altered since */
  595. /* > close eigenvalues are perturbed slightly in searching for */
  596. /* > independent eigenvectors. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in,out] VL */
  600. /* > \verbatim */
  601. /* > VL is COMPLEX*16 array, dimension (LDVL,MM) */
  602. /* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
  603. /* > contain starting vectors for the inverse iteration for the */
  604. /* > left eigenvectors; the starting vector for each eigenvector */
  605. /* > must be in the same column in which the eigenvector will be */
  606. /* > stored. */
  607. /* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
  608. /* > specified by SELECT will be stored consecutively in the */
  609. /* > columns of VL, in the same order as their eigenvalues. */
  610. /* > If SIDE = 'R', VL is not referenced. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDVL */
  614. /* > \verbatim */
  615. /* > LDVL is INTEGER */
  616. /* > The leading dimension of the array VL. */
  617. /* > LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] VR */
  621. /* > \verbatim */
  622. /* > VR is COMPLEX*16 array, dimension (LDVR,MM) */
  623. /* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
  624. /* > contain starting vectors for the inverse iteration for the */
  625. /* > right eigenvectors; the starting vector for each eigenvector */
  626. /* > must be in the same column in which the eigenvector will be */
  627. /* > stored. */
  628. /* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
  629. /* > specified by SELECT will be stored consecutively in the */
  630. /* > columns of VR, in the same order as their eigenvalues. */
  631. /* > If SIDE = 'L', VR is not referenced. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] LDVR */
  635. /* > \verbatim */
  636. /* > LDVR is INTEGER */
  637. /* > The leading dimension of the array VR. */
  638. /* > LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] MM */
  642. /* > \verbatim */
  643. /* > MM is INTEGER */
  644. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] M */
  648. /* > \verbatim */
  649. /* > M is INTEGER */
  650. /* > The number of columns in the arrays VL and/or VR required to */
  651. /* > store the eigenvectors (= the number of .TRUE. elements in */
  652. /* > SELECT). */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] WORK */
  656. /* > \verbatim */
  657. /* > WORK is COMPLEX*16 array, dimension (N*N) */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] RWORK */
  661. /* > \verbatim */
  662. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[out] IFAILL */
  666. /* > \verbatim */
  667. /* > IFAILL is INTEGER array, dimension (MM) */
  668. /* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
  669. /* > eigenvector in the i-th column of VL (corresponding to the */
  670. /* > eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
  671. /* > eigenvector converged satisfactorily. */
  672. /* > If SIDE = 'R', IFAILL is not referenced. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] IFAILR */
  676. /* > \verbatim */
  677. /* > IFAILR is INTEGER array, dimension (MM) */
  678. /* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
  679. /* > eigenvector in the i-th column of VR (corresponding to the */
  680. /* > eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
  681. /* > eigenvector converged satisfactorily. */
  682. /* > If SIDE = 'L', IFAILR is not referenced. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] INFO */
  686. /* > \verbatim */
  687. /* > INFO is INTEGER */
  688. /* > = 0: successful exit */
  689. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  690. /* > > 0: if INFO = i, i is the number of eigenvectors which */
  691. /* > failed to converge; see IFAILL and IFAILR for further */
  692. /* > details. */
  693. /* > \endverbatim */
  694. /* Authors: */
  695. /* ======== */
  696. /* > \author Univ. of Tennessee */
  697. /* > \author Univ. of California Berkeley */
  698. /* > \author Univ. of Colorado Denver */
  699. /* > \author NAG Ltd. */
  700. /* > \date December 2016 */
  701. /* > \ingroup complex16OTHERcomputational */
  702. /* > \par Further Details: */
  703. /* ===================== */
  704. /* > */
  705. /* > \verbatim */
  706. /* > */
  707. /* > Each eigenvector is normalized so that the element of largest */
  708. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  709. /* > (x,y) is taken to be |x|+|y|. */
  710. /* > \endverbatim */
  711. /* > */
  712. /* ===================================================================== */
  713. /* Subroutine */ void zhsein_(char *side, char *eigsrc, char *initv, logical *
  714. select, integer *n, doublecomplex *h__, integer *ldh, doublecomplex *
  715. w, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
  716. integer *mm, integer *m, doublecomplex *work, doublereal *rwork,
  717. integer *ifaill, integer *ifailr, integer *info)
  718. {
  719. /* System generated locals */
  720. integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  721. i__2, i__3;
  722. doublereal d__1, d__2;
  723. doublecomplex z__1, z__2;
  724. /* Local variables */
  725. doublereal unfl;
  726. integer i__, k;
  727. extern logical lsame_(char *, char *);
  728. integer iinfo;
  729. logical leftv, bothv;
  730. doublereal hnorm;
  731. integer kl;
  732. extern doublereal dlamch_(char *);
  733. integer kr, ks;
  734. doublecomplex wk;
  735. extern logical disnan_(doublereal *);
  736. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  737. extern void zlaein_(
  738. logical *, logical *, integer *, doublecomplex *, integer *,
  739. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  740. doublereal *, doublereal *, doublereal *, integer *);
  741. extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
  742. doublereal *);
  743. logical noinit;
  744. integer ldwork;
  745. logical rightv, fromqr;
  746. doublereal smlnum;
  747. integer kln;
  748. doublereal ulp, eps3;
  749. /* -- LAPACK computational routine (version 3.7.0) -- */
  750. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  751. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  752. /* December 2016 */
  753. /* ===================================================================== */
  754. /* Decode and test the input parameters. */
  755. /* Parameter adjustments */
  756. --select;
  757. h_dim1 = *ldh;
  758. h_offset = 1 + h_dim1 * 1;
  759. h__ -= h_offset;
  760. --w;
  761. vl_dim1 = *ldvl;
  762. vl_offset = 1 + vl_dim1 * 1;
  763. vl -= vl_offset;
  764. vr_dim1 = *ldvr;
  765. vr_offset = 1 + vr_dim1 * 1;
  766. vr -= vr_offset;
  767. --work;
  768. --rwork;
  769. --ifaill;
  770. --ifailr;
  771. /* Function Body */
  772. bothv = lsame_(side, "B");
  773. rightv = lsame_(side, "R") || bothv;
  774. leftv = lsame_(side, "L") || bothv;
  775. fromqr = lsame_(eigsrc, "Q");
  776. noinit = lsame_(initv, "N");
  777. /* Set M to the number of columns required to store the selected */
  778. /* eigenvectors. */
  779. *m = 0;
  780. i__1 = *n;
  781. for (k = 1; k <= i__1; ++k) {
  782. if (select[k]) {
  783. ++(*m);
  784. }
  785. /* L10: */
  786. }
  787. *info = 0;
  788. if (! rightv && ! leftv) {
  789. *info = -1;
  790. } else if (! fromqr && ! lsame_(eigsrc, "N")) {
  791. *info = -2;
  792. } else if (! noinit && ! lsame_(initv, "U")) {
  793. *info = -3;
  794. } else if (*n < 0) {
  795. *info = -5;
  796. } else if (*ldh < f2cmax(1,*n)) {
  797. *info = -7;
  798. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  799. *info = -10;
  800. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  801. *info = -12;
  802. } else if (*mm < *m) {
  803. *info = -13;
  804. }
  805. if (*info != 0) {
  806. i__1 = -(*info);
  807. xerbla_("ZHSEIN", &i__1, (ftnlen)6);
  808. return;
  809. }
  810. /* Quick return if possible. */
  811. if (*n == 0) {
  812. return;
  813. }
  814. /* Set machine-dependent constants. */
  815. unfl = dlamch_("Safe minimum");
  816. ulp = dlamch_("Precision");
  817. smlnum = unfl * (*n / ulp);
  818. ldwork = *n;
  819. kl = 1;
  820. kln = 0;
  821. if (fromqr) {
  822. kr = 0;
  823. } else {
  824. kr = *n;
  825. }
  826. ks = 1;
  827. i__1 = *n;
  828. for (k = 1; k <= i__1; ++k) {
  829. if (select[k]) {
  830. /* Compute eigenvector(s) corresponding to W(K). */
  831. if (fromqr) {
  832. /* If affiliation of eigenvalues is known, check whether */
  833. /* the matrix splits. */
  834. /* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
  835. /* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
  836. /* KR = N). */
  837. /* Then inverse iteration can be performed with the */
  838. /* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
  839. /* the submatrix H(1:KR,1:KR) for a right eigenvector. */
  840. i__2 = kl + 1;
  841. for (i__ = k; i__ >= i__2; --i__) {
  842. i__3 = i__ + (i__ - 1) * h_dim1;
  843. if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
  844. goto L30;
  845. }
  846. /* L20: */
  847. }
  848. L30:
  849. kl = i__;
  850. if (k > kr) {
  851. i__2 = *n - 1;
  852. for (i__ = k; i__ <= i__2; ++i__) {
  853. i__3 = i__ + 1 + i__ * h_dim1;
  854. if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
  855. goto L50;
  856. }
  857. /* L40: */
  858. }
  859. L50:
  860. kr = i__;
  861. }
  862. }
  863. if (kl != kln) {
  864. kln = kl;
  865. /* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
  866. /* has not ben computed before. */
  867. i__2 = kr - kl + 1;
  868. hnorm = zlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
  869. rwork[1]);
  870. if (disnan_(&hnorm)) {
  871. *info = -6;
  872. return;
  873. } else if (hnorm > 0.) {
  874. eps3 = hnorm * ulp;
  875. } else {
  876. eps3 = smlnum;
  877. }
  878. }
  879. /* Perturb eigenvalue if it is close to any previous */
  880. /* selected eigenvalues affiliated to the submatrix */
  881. /* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
  882. i__2 = k;
  883. wk.r = w[i__2].r, wk.i = w[i__2].i;
  884. L60:
  885. i__2 = kl;
  886. for (i__ = k - 1; i__ >= i__2; --i__) {
  887. i__3 = i__;
  888. z__2.r = w[i__3].r - wk.r, z__2.i = w[i__3].i - wk.i;
  889. z__1.r = z__2.r, z__1.i = z__2.i;
  890. if (select[i__] && (d__1 = z__1.r, abs(d__1)) + (d__2 =
  891. d_imag(&z__1), abs(d__2)) < eps3) {
  892. z__1.r = wk.r + eps3, z__1.i = wk.i;
  893. wk.r = z__1.r, wk.i = z__1.i;
  894. goto L60;
  895. }
  896. /* L70: */
  897. }
  898. i__2 = k;
  899. w[i__2].r = wk.r, w[i__2].i = wk.i;
  900. if (leftv) {
  901. /* Compute left eigenvector. */
  902. i__2 = *n - kl + 1;
  903. zlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
  904. &wk, &vl[kl + ks * vl_dim1], &work[1], &ldwork, &
  905. rwork[1], &eps3, &smlnum, &iinfo);
  906. if (iinfo > 0) {
  907. ++(*info);
  908. ifaill[ks] = k;
  909. } else {
  910. ifaill[ks] = 0;
  911. }
  912. i__2 = kl - 1;
  913. for (i__ = 1; i__ <= i__2; ++i__) {
  914. i__3 = i__ + ks * vl_dim1;
  915. vl[i__3].r = 0., vl[i__3].i = 0.;
  916. /* L80: */
  917. }
  918. }
  919. if (rightv) {
  920. /* Compute right eigenvector. */
  921. zlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wk, &vr[
  922. ks * vr_dim1 + 1], &work[1], &ldwork, &rwork[1], &
  923. eps3, &smlnum, &iinfo);
  924. if (iinfo > 0) {
  925. ++(*info);
  926. ifailr[ks] = k;
  927. } else {
  928. ifailr[ks] = 0;
  929. }
  930. i__2 = *n;
  931. for (i__ = kr + 1; i__ <= i__2; ++i__) {
  932. i__3 = i__ + ks * vr_dim1;
  933. vr[i__3].r = 0., vr[i__3].i = 0.;
  934. /* L90: */
  935. }
  936. }
  937. ++ks;
  938. }
  939. /* L100: */
  940. }
  941. return;
  942. /* End of ZHSEIN */
  943. } /* zhsein_ */