|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static real c_b18 = -1.f;
- static real c_b20 = 1.f;
-
- /* > \brief \b SSYTRF_AA */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SSYTRF_AA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrf_
- aa.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrf_
- aa.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrf_
- aa.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER N, LDA, LWORK, INFO */
- /* INTEGER IPIV( * ) */
- /* REAL A( LDA, * ), WORK( * ) */
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SSYTRF_AA computes the factorization of a real symmetric matrix A */
- /* > using the Aasen's algorithm. The form of the factorization is */
- /* > */
- /* > A = U**T*T*U or A = L*T*L**T */
- /* > */
- /* > where U (or L) is a product of permutation and unit upper (lower) */
- /* > triangular matrices, and T is a symmetric tridiagonal matrix. */
- /* > */
- /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* > N-by-N upper triangular part of A contains the upper */
- /* > triangular part of the matrix A, and the strictly lower */
- /* > triangular part of A is not referenced. If UPLO = 'L', the */
- /* > leading N-by-N lower triangular part of A contains the lower */
- /* > triangular part of the matrix A, and the strictly upper */
- /* > triangular part of A is not referenced. */
- /* > */
- /* > On exit, the tridiagonal matrix is stored in the diagonals */
- /* > and the subdiagonals of A just below (or above) the diagonals, */
- /* > and L is stored below (or above) the subdiaonals, when UPLO */
- /* > is 'L' (or 'U'). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > On exit, it contains the details of the interchanges, i.e., */
- /* > the row and column k of A were interchanged with the */
- /* > row and column IPIV(k). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The length of WORK. LWORK >= MAX(1,2*N). For optimum performance */
- /* > LWORK >= N*(1+NB), where NB is the optimal blocksize. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup realSYcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void ssytrf_aa_(char *uplo, integer *n, real *a, integer *
- lda, integer *ipiv, real *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer j;
- real alpha;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
- sgemm_(char *, char *, integer *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *), slasyf_aa_(char *, integer *, integer *,
- integer *, real *, integer *, integer *, real *, integer *, real *
- ), sgemv_(char *, integer *, integer *, real *, real *,
- integer *, real *, integer *, real *, real *, integer *);
- logical upper;
- integer k1, k2, j1, j2, j3;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *), sswap_(integer *, real *, integer *, real *, integer *
- );
- integer jb, nb, mj, nj;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer lwkopt;
- logical lquery;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
-
- /* ===================================================================== */
-
-
- /* Determine the block size */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- --work;
-
- /* Function Body */
- nb = ilaenv_(&c__1, "SSYTRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9,
- (ftnlen)1);
-
- /* Test the input parameters. */
-
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -4;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *n << 1;
- if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
- *info = -7;
- }
- }
-
- if (*info == 0) {
- lwkopt = (nb + 1) * *n;
- work[1] = (real) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SSYTRF_AA", &i__1, (ftnlen)9);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return */
-
- if (*n == 0) {
- return;
- }
- ipiv[1] = 1;
- if (*n == 1) {
- return;
- }
-
- /* Adjust block size based on the workspace size */
-
- if (*lwork < (nb + 1) * *n) {
- nb = (*lwork - *n) / *n;
- }
-
- if (upper) {
-
- /* ..................................................... */
- /* Factorize A as U**T*D*U using the upper triangle of A */
- /* ..................................................... */
-
- /* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
-
- scopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
-
- /* J is the main loop index, increasing from 1 to N in steps of */
- /* JB, where JB is the number of columns factorized by SLASYF; */
- /* JB is either NB, or N-J+1 for the last block */
-
- j = 0;
- L10:
- if (j >= *n) {
- goto L20;
- }
-
- /* each step of the main loop */
- /* J is the last column of the previous panel */
- /* J1 is the first column of the current panel */
- /* K1 identifies if the previous column of the panel has been */
- /* explicitly stored, e.g., K1=1 for the first panel, and */
- /* K1=0 for the rest */
-
- j1 = j + 1;
- /* Computing MIN */
- i__1 = *n - j1 + 1;
- jb = f2cmin(i__1,nb);
- k1 = f2cmax(1,j) - j;
-
- /* Panel factorization */
-
- i__1 = 2 - k1;
- i__2 = *n - j;
- slasyf_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1],
- lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
- ;
-
- /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
-
- /* Computing MIN */
- i__2 = *n, i__3 = j + jb + 1;
- i__1 = f2cmin(i__2,i__3);
- for (j2 = j + 2; j2 <= i__1; ++j2) {
- ipiv[j2] += j;
- if (j2 != ipiv[j2] && j1 - k1 > 2) {
- i__2 = j1 - k1 - 2;
- sswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] *
- a_dim1 + 1], &c__1);
- }
- }
- j += jb;
-
- /* Trailing submatrix update, where */
- /* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
- /* WORK stores the current block of the auxiriarly matrix H */
-
- if (j < *n) {
-
- /* If first panel and JB=1 (NB=1), then nothing to do */
-
- if (j1 > 1 || jb > 1) {
-
- /* Merge rank-1 update with BLAS-3 update */
-
- alpha = a[j + (j + 1) * a_dim1];
- a[j + (j + 1) * a_dim1] = 1.f;
- i__1 = *n - j;
- scopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1
- - j1 + 1 + jb * *n], &c__1);
- i__1 = *n - j;
- sscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
-
- /* K1 identifies if the previous column of the panel has been */
- /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
- /* while K1=0 and K2=1 for the rest */
-
- if (j1 > 1) {
-
- /* Not first panel */
-
- k2 = 1;
- } else {
-
- /* First panel */
-
- k2 = 0;
-
- /* First update skips the first column */
-
- --jb;
- }
-
- i__1 = *n;
- i__2 = nb;
- for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 +=
- i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - j2 + 1;
- nj = f2cmin(i__3,i__4);
-
- /* Update (J2, J2) diagonal block with SGEMV */
-
- j3 = j2;
- for (mj = nj - 1; mj >= 1; --mj) {
- i__3 = jb + 1;
- sgemv_("No transpose", &mj, &i__3, &c_b18, &work[j3 -
- j1 + 1 + k1 * *n], n, &a[j1 - k2 + j3 *
- a_dim1], &c__1, &c_b20, &a[j3 + j3 * a_dim1],
- lda);
- ++j3;
- }
-
- /* Update off-diagonal block of J2-th block row with SGEMM */
-
- i__3 = *n - j3 + 1;
- i__4 = jb + 1;
- sgemm_("Transpose", "Transpose", &nj, &i__3, &i__4, &
- c_b18, &a[j1 - k2 + j2 * a_dim1], lda, &work[j3 -
- j1 + 1 + k1 * *n], n, &c_b20, &a[j2 + j3 * a_dim1]
- , lda);
- }
-
- /* Recover T( J, J+1 ) */
-
- a[j + (j + 1) * a_dim1] = alpha;
- }
-
- /* WORK(J+1, 1) stores H(J+1, 1) */
-
- i__2 = *n - j;
- scopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
- }
- goto L10;
- } else {
-
- /* ..................................................... */
- /* Factorize A as L*D*L**T using the lower triangle of A */
- /* ..................................................... */
-
- /* copy first column A(1:N, 1) into H(1:N, 1) */
- /* (stored in WORK(1:N)) */
-
- scopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
-
- /* J is the main loop index, increasing from 1 to N in steps of */
- /* JB, where JB is the number of columns factorized by SLASYF; */
- /* JB is either NB, or N-J+1 for the last block */
-
- j = 0;
- L11:
- if (j >= *n) {
- goto L20;
- }
-
- /* each step of the main loop */
- /* J is the last column of the previous panel */
- /* J1 is the first column of the current panel */
- /* K1 identifies if the previous column of the panel has been */
- /* explicitly stored, e.g., K1=1 for the first panel, and */
- /* K1=0 for the rest */
-
- j1 = j + 1;
- /* Computing MIN */
- i__2 = *n - j1 + 1;
- jb = f2cmin(i__2,nb);
- k1 = f2cmax(1,j) - j;
-
- /* Panel factorization */
-
- i__2 = 2 - k1;
- i__1 = *n - j;
- slasyf_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1],
- lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
- ;
-
- /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
-
- /* Computing MIN */
- i__1 = *n, i__3 = j + jb + 1;
- i__2 = f2cmin(i__1,i__3);
- for (j2 = j + 2; j2 <= i__2; ++j2) {
- ipiv[j2] += j;
- if (j2 != ipiv[j2] && j1 - k1 > 2) {
- i__1 = j1 - k1 - 2;
- sswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1],
- lda);
- }
- }
- j += jb;
-
- /* Trailing submatrix update, where */
- /* A(J2+1, J1-1) stores L(J2+1, J1) and */
- /* WORK(J2+1, 1) stores H(J2+1, 1) */
-
- if (j < *n) {
-
- /* if first panel and JB=1 (NB=1), then nothing to do */
-
- if (j1 > 1 || jb > 1) {
-
- /* Merge rank-1 update with BLAS-3 update */
-
- alpha = a[j + 1 + j * a_dim1];
- a[j + 1 + j * a_dim1] = 1.f;
- i__2 = *n - j;
- scopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j +
- 1 - j1 + 1 + jb * *n], &c__1);
- i__2 = *n - j;
- sscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
-
- /* K1 identifies if the previous column of the panel has been */
- /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
- /* while K1=0 and K2=1 for the rest */
-
- if (j1 > 1) {
-
- /* Not first panel */
-
- k2 = 1;
- } else {
-
- /* First panel */
-
- k2 = 0;
-
- /* First update skips the first column */
-
- --jb;
- }
-
- i__2 = *n;
- i__1 = nb;
- for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 +=
- i__1) {
- /* Computing MIN */
- i__3 = nb, i__4 = *n - j2 + 1;
- nj = f2cmin(i__3,i__4);
-
- /* Update (J2, J2) diagonal block with SGEMV */
-
- j3 = j2;
- for (mj = nj - 1; mj >= 1; --mj) {
- i__3 = jb + 1;
- sgemv_("No transpose", &mj, &i__3, &c_b18, &work[j3 -
- j1 + 1 + k1 * *n], n, &a[j3 + (j1 - k2) *
- a_dim1], lda, &c_b20, &a[j3 + j3 * a_dim1], &
- c__1);
- ++j3;
- }
-
- /* Update off-diagonal block in J2-th block column with SGEMM */
-
- i__3 = *n - j3 + 1;
- i__4 = jb + 1;
- sgemm_("No transpose", "Transpose", &i__3, &nj, &i__4, &
- c_b18, &work[j3 - j1 + 1 + k1 * *n], n, &a[j2 + (
- j1 - k2) * a_dim1], lda, &c_b20, &a[j3 + j2 *
- a_dim1], lda);
- }
-
- /* Recover T( J+1, J ) */
-
- a[j + 1 + j * a_dim1] = alpha;
- }
-
- /* WORK(J+1, 1) stores H(J+1, 1) */
-
- i__1 = *n - j;
- scopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
- c__1);
- }
- goto L11;
- }
-
- L20:
- return;
-
- /* End of SSYTRF_AA */
-
- } /* ssytrf_aa__ */
-
|