You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd2by1.c 45 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. static integer c__1 = 1;
  486. static logical c_false = FALSE_;
  487. /* > \brief \b SORCSD2BY1 */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SORCSD2BY1 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2
  494. by1.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2
  497. by1.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2
  500. by1.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */
  506. /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */
  507. /* LDV1T, WORK, LWORK, IWORK, INFO ) */
  508. /* CHARACTER JOBU1, JOBU2, JOBV1T */
  509. /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */
  510. /* $ M, P, Q */
  511. /* REAL THETA(*) */
  512. /* REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */
  513. /* $ X11(LDX11,*), X21(LDX21,*) */
  514. /* INTEGER IWORK(*) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* >\verbatim */
  519. /* > */
  520. /* > SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */
  521. /* > orthonormal columns that has been partitioned into a 2-by-1 block */
  522. /* > structure: */
  523. /* > */
  524. /* > [ I1 0 0 ] */
  525. /* > [ 0 C 0 ] */
  526. /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */
  527. /* > X = [-----] = [---------] [----------] V1**T . */
  528. /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */
  529. /* > [ 0 S 0 ] */
  530. /* > [ 0 0 I2] */
  531. /* > */
  532. /* > X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P, */
  533. /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */
  534. /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */
  535. /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */
  536. /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] JOBU1 */
  541. /* > \verbatim */
  542. /* > JOBU1 is CHARACTER */
  543. /* > = 'Y': U1 is computed; */
  544. /* > otherwise: U1 is not computed. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] JOBU2 */
  548. /* > \verbatim */
  549. /* > JOBU2 is CHARACTER */
  550. /* > = 'Y': U2 is computed; */
  551. /* > otherwise: U2 is not computed. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBV1T */
  555. /* > \verbatim */
  556. /* > JOBV1T is CHARACTER */
  557. /* > = 'Y': V1T is computed; */
  558. /* > otherwise: V1T is not computed. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] M */
  562. /* > \verbatim */
  563. /* > M is INTEGER */
  564. /* > The number of rows in X. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] P */
  568. /* > \verbatim */
  569. /* > P is INTEGER */
  570. /* > The number of rows in X11. 0 <= P <= M. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] Q */
  574. /* > \verbatim */
  575. /* > Q is INTEGER */
  576. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] X11 */
  580. /* > \verbatim */
  581. /* > X11 is REAL array, dimension (LDX11,Q) */
  582. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDX11 */
  586. /* > \verbatim */
  587. /* > LDX11 is INTEGER */
  588. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] X21 */
  592. /* > \verbatim */
  593. /* > X21 is REAL array, dimension (LDX21,Q) */
  594. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDX21 */
  598. /* > \verbatim */
  599. /* > LDX21 is INTEGER */
  600. /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] THETA */
  604. /* > \verbatim */
  605. /* > THETA is REAL array, dimension (R), in which R = */
  606. /* > MIN(P,M-P,Q,M-Q). */
  607. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  608. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] U1 */
  612. /* > \verbatim */
  613. /* > U1 is REAL array, dimension (P) */
  614. /* > If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDU1 */
  618. /* > \verbatim */
  619. /* > LDU1 is INTEGER */
  620. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  621. /* > MAX(1,P). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] U2 */
  625. /* > \verbatim */
  626. /* > U2 is REAL array, dimension (M-P) */
  627. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal */
  628. /* > matrix U2. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDU2 */
  632. /* > \verbatim */
  633. /* > LDU2 is INTEGER */
  634. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  635. /* > MAX(1,M-P). */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] V1T */
  639. /* > \verbatim */
  640. /* > V1T is REAL array, dimension (Q) */
  641. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal */
  642. /* > matrix V1**T. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] LDV1T */
  646. /* > \verbatim */
  647. /* > LDV1T is INTEGER */
  648. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  649. /* > MAX(1,Q). */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] WORK */
  653. /* > \verbatim */
  654. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  655. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  656. /* > If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), */
  657. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  658. /* > define the matrix in intermediate bidiagonal-block form */
  659. /* > remaining after nonconvergence. INFO specifies the number */
  660. /* > of nonzero PHI's. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LWORK */
  664. /* > \verbatim */
  665. /* > LWORK is INTEGER */
  666. /* > The dimension of the array WORK. */
  667. /* > */
  668. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  669. /* > only calculates the optimal size of the WORK array, returns */
  670. /* > this value as the first entry of the work array, and no error */
  671. /* > message related to LWORK is issued by XERBLA. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] IWORK */
  675. /* > \verbatim */
  676. /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] INFO */
  680. /* > \verbatim */
  681. /* > INFO is INTEGER */
  682. /* > = 0: successful exit. */
  683. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  684. /* > > 0: SBBCSD did not converge. See the description of WORK */
  685. /* > above for details. */
  686. /* > \endverbatim */
  687. /* > \par References: */
  688. /* ================ */
  689. /* > */
  690. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  691. /* > Algorithms, 50(1):33-65, 2009. */
  692. /* Authors: */
  693. /* ======== */
  694. /* > \author Univ. of Tennessee */
  695. /* > \author Univ. of California Berkeley */
  696. /* > \author Univ. of Colorado Denver */
  697. /* > \author NAG Ltd. */
  698. /* > \date July 2012 */
  699. /* > \ingroup realOTHERcomputational */
  700. /* ===================================================================== */
  701. /* Subroutine */ void sorcsd2by1_(char *jobu1, char *jobu2, char *jobv1t,
  702. integer *m, integer *p, integer *q, real *x11, integer *ldx11, real *
  703. x21, integer *ldx21, real *theta, real *u1, integer *ldu1, real *u2,
  704. integer *ldu2, real *v1t, integer *ldv1t, real *work, integer *lwork,
  705. integer *iwork, integer *info)
  706. {
  707. /* System generated locals */
  708. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  709. x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3;
  710. /* Local variables */
  711. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi,
  712. lworkmin, lworkopt, i__, j, r__;
  713. extern logical lsame_(char *, char *);
  714. integer childinfo;
  715. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  716. integer *);
  717. integer lorglqmin, lorgqrmin, lorglqopt, itaup1, itaup2, itauq1,
  718. lorgqropt;
  719. logical wantu1, wantu2;
  720. integer ibbcsd, lbbcsd;
  721. extern /* Subroutine */ void sbbcsd_(char *, char *, char *, char *, char *
  722. , integer *, integer *, integer *, real *, real *, real *,
  723. integer *, real *, integer *, real *, integer *, real *, integer *
  724. , real *, real *, real *, real *, real *, real *, real *, real *,
  725. real *, integer *, integer *);
  726. integer iorbdb, lorbdb;
  727. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  728. extern void slacpy_(
  729. char *, integer *, integer *, real *, integer *, real *, integer *
  730. );
  731. integer iorglq;
  732. extern /* Subroutine */ void slapmr_(logical *, integer *, integer *, real
  733. *, integer *, integer *);
  734. integer lorglq;
  735. extern /* Subroutine */ void slapmt_(logical *, integer *, integer *, real
  736. *, integer *, integer *);
  737. integer iorgqr, lorgqr;
  738. extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real
  739. *, integer *, real *, real *, integer *, integer *), sorgqr_(
  740. integer *, integer *, integer *, real *, integer *, real *, real *
  741. , integer *, integer *);
  742. logical lquery;
  743. extern /* Subroutine */ void sorbdb1_(integer *, integer *, integer *,
  744. real *, integer *, real *, integer *, real *, real *, real *,
  745. real *, real *, real *, integer *, integer *), sorbdb2_(integer *,
  746. integer *, integer *, real *, integer *, real *, integer *, real
  747. *, real *, real *, real *, real *, real *, integer *, integer *),
  748. sorbdb3_(integer *, integer *, integer *, real *, integer *, real
  749. *, integer *, real *, real *, real *, real *, real *, real *,
  750. integer *, integer *), sorbdb4_(integer *, integer *, integer *,
  751. real *, integer *, real *, integer *, real *, real *, real *,
  752. real *, real *, real *, real *, integer *, integer *);
  753. logical wantv1t;
  754. real dum1[1], dum2[1] /* was [1][1] */;
  755. /* -- LAPACK computational routine (version 3.7.1) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* July 2012 */
  759. /* ===================================================================== */
  760. /* Test input arguments */
  761. /* Parameter adjustments */
  762. x11_dim1 = *ldx11;
  763. x11_offset = 1 + x11_dim1 * 1;
  764. x11 -= x11_offset;
  765. x21_dim1 = *ldx21;
  766. x21_offset = 1 + x21_dim1 * 1;
  767. x21 -= x21_offset;
  768. --theta;
  769. u1_dim1 = *ldu1;
  770. u1_offset = 1 + u1_dim1 * 1;
  771. u1 -= u1_offset;
  772. u2_dim1 = *ldu2;
  773. u2_offset = 1 + u2_dim1 * 1;
  774. u2 -= u2_offset;
  775. v1t_dim1 = *ldv1t;
  776. v1t_offset = 1 + v1t_dim1 * 1;
  777. v1t -= v1t_offset;
  778. --work;
  779. --iwork;
  780. /* Function Body */
  781. *info = 0;
  782. wantu1 = lsame_(jobu1, "Y");
  783. wantu2 = lsame_(jobu2, "Y");
  784. wantv1t = lsame_(jobv1t, "Y");
  785. lquery = *lwork == -1;
  786. if (*m < 0) {
  787. *info = -4;
  788. } else if (*p < 0 || *p > *m) {
  789. *info = -5;
  790. } else if (*q < 0 || *q > *m) {
  791. *info = -6;
  792. } else if (*ldx11 < f2cmax(1,*p)) {
  793. *info = -8;
  794. } else /* if(complicated condition) */ {
  795. /* Computing MAX */
  796. i__1 = 1, i__2 = *m - *p;
  797. if (*ldx21 < f2cmax(i__1,i__2)) {
  798. *info = -10;
  799. } else if (wantu1 && *ldu1 < f2cmax(1,*p)) {
  800. *info = -13;
  801. } else /* if(complicated condition) */ {
  802. /* Computing MAX */
  803. i__1 = 1, i__2 = *m - *p;
  804. if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) {
  805. *info = -15;
  806. } else if (wantv1t && *ldv1t < f2cmax(1,*q)) {
  807. *info = -17;
  808. }
  809. }
  810. }
  811. /* Computing MIN */
  812. i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q),
  813. i__2 = *m - *q;
  814. r__ = f2cmin(i__1,i__2);
  815. /* Compute workspace */
  816. /* WORK layout: */
  817. /* |-------------------------------------------------------| */
  818. /* | LWORKOPT (1) | */
  819. /* |-------------------------------------------------------| */
  820. /* | PHI (MAX(1,R-1)) | */
  821. /* |-------------------------------------------------------| */
  822. /* | TAUP1 (MAX(1,P)) | B11D (R) | */
  823. /* | TAUP2 (MAX(1,M-P)) | B11E (R-1) | */
  824. /* | TAUQ1 (MAX(1,Q)) | B12D (R) | */
  825. /* |-----------------------------------------| B12E (R-1) | */
  826. /* | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) | */
  827. /* | | | | B21E (R-1) | */
  828. /* | | | | B22D (R) | */
  829. /* | | | | B22E (R-1) | */
  830. /* | | | | SBBCSD WORK | */
  831. /* |-------------------------------------------------------| */
  832. if (*info == 0) {
  833. iphi = 2;
  834. /* Computing MAX */
  835. i__1 = 1, i__2 = r__ - 1;
  836. ib11d = iphi + f2cmax(i__1,i__2);
  837. ib11e = ib11d + f2cmax(1,r__);
  838. /* Computing MAX */
  839. i__1 = 1, i__2 = r__ - 1;
  840. ib12d = ib11e + f2cmax(i__1,i__2);
  841. ib12e = ib12d + f2cmax(1,r__);
  842. /* Computing MAX */
  843. i__1 = 1, i__2 = r__ - 1;
  844. ib21d = ib12e + f2cmax(i__1,i__2);
  845. ib21e = ib21d + f2cmax(1,r__);
  846. /* Computing MAX */
  847. i__1 = 1, i__2 = r__ - 1;
  848. ib22d = ib21e + f2cmax(i__1,i__2);
  849. ib22e = ib22d + f2cmax(1,r__);
  850. /* Computing MAX */
  851. i__1 = 1, i__2 = r__ - 1;
  852. ibbcsd = ib22e + f2cmax(i__1,i__2);
  853. /* Computing MAX */
  854. i__1 = 1, i__2 = r__ - 1;
  855. itaup1 = iphi + f2cmax(i__1,i__2);
  856. itaup2 = itaup1 + f2cmax(1,*p);
  857. /* Computing MAX */
  858. i__1 = 1, i__2 = *m - *p;
  859. itauq1 = itaup2 + f2cmax(i__1,i__2);
  860. iorbdb = itauq1 + f2cmax(1,*q);
  861. iorgqr = itauq1 + f2cmax(1,*q);
  862. iorglq = itauq1 + f2cmax(1,*q);
  863. lorgqrmin = 1;
  864. lorgqropt = 1;
  865. lorglqmin = 1;
  866. lorglqopt = 1;
  867. if (r__ == *q) {
  868. sorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  869. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  870. &childinfo);
  871. lorbdb = (integer) work[1];
  872. if (wantu1 && *p > 0) {
  873. sorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  874. &childinfo);
  875. lorgqrmin = f2cmax(lorgqrmin,*p);
  876. /* Computing MAX */
  877. i__1 = lorgqropt, i__2 = (integer) work[1];
  878. lorgqropt = f2cmax(i__1,i__2);
  879. }
  880. if (wantu2 && *m - *p > 0) {
  881. i__1 = *m - *p;
  882. i__2 = *m - *p;
  883. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  884. &c_n1, &childinfo);
  885. /* Computing MAX */
  886. i__1 = lorgqrmin, i__2 = *m - *p;
  887. lorgqrmin = f2cmax(i__1,i__2);
  888. /* Computing MAX */
  889. i__1 = lorgqropt, i__2 = (integer) work[1];
  890. lorgqropt = f2cmax(i__1,i__2);
  891. }
  892. if (wantv1t && *q > 0) {
  893. i__1 = *q - 1;
  894. i__2 = *q - 1;
  895. i__3 = *q - 1;
  896. sorglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, dum1, &
  897. work[1], &c_n1, &childinfo);
  898. /* Computing MAX */
  899. i__1 = lorglqmin, i__2 = *q - 1;
  900. lorglqmin = f2cmax(i__1,i__2);
  901. /* Computing MAX */
  902. i__1 = lorglqopt, i__2 = (integer) work[1];
  903. lorglqopt = f2cmax(i__1,i__2);
  904. }
  905. sbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum1,
  906. &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  907. v1t_offset], ldv1t, dum2, &c__1, dum1, dum1, dum1, dum1,
  908. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  909. lbbcsd = (integer) work[1];
  910. } else if (r__ == *p) {
  911. sorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  912. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  913. &childinfo);
  914. lorbdb = (integer) work[1];
  915. if (wantu1 && *p > 0) {
  916. i__1 = *p - 1;
  917. i__2 = *p - 1;
  918. i__3 = *p - 1;
  919. sorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1,
  920. dum1, &work[1], &c_n1, &childinfo);
  921. /* Computing MAX */
  922. i__1 = lorgqrmin, i__2 = *p - 1;
  923. lorgqrmin = f2cmax(i__1,i__2);
  924. /* Computing MAX */
  925. i__1 = lorgqropt, i__2 = (integer) work[1];
  926. lorgqropt = f2cmax(i__1,i__2);
  927. }
  928. if (wantu2 && *m - *p > 0) {
  929. i__1 = *m - *p;
  930. i__2 = *m - *p;
  931. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  932. &c_n1, &childinfo);
  933. /* Computing MAX */
  934. i__1 = lorgqrmin, i__2 = *m - *p;
  935. lorgqrmin = f2cmax(i__1,i__2);
  936. /* Computing MAX */
  937. i__1 = lorgqropt, i__2 = (integer) work[1];
  938. lorgqropt = f2cmax(i__1,i__2);
  939. }
  940. if (wantv1t && *q > 0) {
  941. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  942. c_n1, &childinfo);
  943. lorglqmin = f2cmax(lorglqmin,*q);
  944. /* Computing MAX */
  945. i__1 = lorglqopt, i__2 = (integer) work[1];
  946. lorglqopt = f2cmax(i__1,i__2);
  947. }
  948. sbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum1,
  949. &v1t[v1t_offset], ldv1t, dum2, &c__1, &u1[u1_offset],
  950. ldu1, &u2[u2_offset], ldu2, dum1, dum1, dum1, dum1, dum1,
  951. dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  952. lbbcsd = (integer) work[1];
  953. } else if (r__ == *m - *p) {
  954. sorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  955. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  956. &childinfo);
  957. lorbdb = (integer) work[1];
  958. if (wantu1 && *p > 0) {
  959. sorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  960. &childinfo);
  961. lorgqrmin = f2cmax(lorgqrmin,*p);
  962. /* Computing MAX */
  963. i__1 = lorgqropt, i__2 = (integer) work[1];
  964. lorgqropt = f2cmax(i__1,i__2);
  965. }
  966. if (wantu2 && *m - *p > 0) {
  967. i__1 = *m - *p - 1;
  968. i__2 = *m - *p - 1;
  969. i__3 = *m - *p - 1;
  970. sorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2,
  971. dum1, &work[1], &c_n1, &childinfo);
  972. /* Computing MAX */
  973. i__1 = lorgqrmin, i__2 = *m - *p - 1;
  974. lorgqrmin = f2cmax(i__1,i__2);
  975. /* Computing MAX */
  976. i__1 = lorgqropt, i__2 = (integer) work[1];
  977. lorgqropt = f2cmax(i__1,i__2);
  978. }
  979. if (wantv1t && *q > 0) {
  980. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  981. c_n1, &childinfo);
  982. lorglqmin = f2cmax(lorglqmin,*q);
  983. /* Computing MAX */
  984. i__1 = lorglqopt, i__2 = (integer) work[1];
  985. lorglqopt = f2cmax(i__1,i__2);
  986. }
  987. i__1 = *m - *q;
  988. i__2 = *m - *p;
  989. sbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1]
  990. , dum1, dum2, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  991. u2_offset], ldu2, &u1[u1_offset], ldu1, dum1, dum1, dum1,
  992. dum1, dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  993. lbbcsd = (integer) work[1];
  994. } else {
  995. sorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  996. ldx21, &theta[1], dum1, dum1, dum1, dum1, dum1, &work[1],
  997. &c_n1, &childinfo);
  998. lorbdb = *m + (integer) work[1];
  999. if (wantu1 && *p > 0) {
  1000. i__1 = *m - *q;
  1001. sorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, dum1, &work[1], &
  1002. c_n1, &childinfo);
  1003. lorgqrmin = f2cmax(lorgqrmin,*p);
  1004. /* Computing MAX */
  1005. i__1 = lorgqropt, i__2 = (integer) work[1];
  1006. lorgqropt = f2cmax(i__1,i__2);
  1007. }
  1008. if (wantu2 && *m - *p > 0) {
  1009. i__1 = *m - *p;
  1010. i__2 = *m - *p;
  1011. i__3 = *m - *q;
  1012. sorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, dum1, &
  1013. work[1], &c_n1, &childinfo);
  1014. /* Computing MAX */
  1015. i__1 = lorgqrmin, i__2 = *m - *p;
  1016. lorgqrmin = f2cmax(i__1,i__2);
  1017. /* Computing MAX */
  1018. i__1 = lorgqropt, i__2 = (integer) work[1];
  1019. lorgqropt = f2cmax(i__1,i__2);
  1020. }
  1021. if (wantv1t && *q > 0) {
  1022. sorglq_(q, q, q, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  1023. c_n1, &childinfo);
  1024. lorglqmin = f2cmax(lorglqmin,*q);
  1025. /* Computing MAX */
  1026. i__1 = lorglqopt, i__2 = (integer) work[1];
  1027. lorglqopt = f2cmax(i__1,i__2);
  1028. }
  1029. i__1 = *m - *p;
  1030. i__2 = *m - *q;
  1031. sbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1]
  1032. , dum1, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum2,
  1033. &c__1, &v1t[v1t_offset], ldv1t, dum1, dum1, dum1, dum1,
  1034. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  1035. lbbcsd = (integer) work[1];
  1036. }
  1037. /* Computing MAX */
  1038. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax(
  1039. i__1,i__2), i__2 = iorglq + lorglqmin - 1, i__1 = f2cmax(i__1,
  1040. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1041. lworkmin = f2cmax(i__1,i__2);
  1042. /* Computing MAX */
  1043. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax(
  1044. i__1,i__2), i__2 = iorglq + lorglqopt - 1, i__1 = f2cmax(i__1,
  1045. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1046. lworkopt = f2cmax(i__1,i__2);
  1047. work[1] = (real) lworkopt;
  1048. if (*lwork < lworkmin && ! lquery) {
  1049. *info = -19;
  1050. }
  1051. }
  1052. if (*info != 0) {
  1053. i__1 = -(*info);
  1054. xerbla_("SORCSD2BY1", &i__1, (ftnlen)10);
  1055. return;
  1056. } else if (lquery) {
  1057. return;
  1058. }
  1059. lorgqr = *lwork - iorgqr + 1;
  1060. lorglq = *lwork - iorglq + 1;
  1061. /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */
  1062. /* in which R = MIN(P,M-P,Q,M-Q) */
  1063. if (r__ == *q) {
  1064. /* Case 1: R = Q */
  1065. /* Simultaneously bidiagonalize X11 and X21 */
  1066. sorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1067. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1068. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1069. /* Accumulate Householder reflectors */
  1070. if (wantu1 && *p > 0) {
  1071. slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1072. sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1073. iorgqr], &lorgqr, &childinfo);
  1074. }
  1075. if (wantu2 && *m - *p > 0) {
  1076. i__1 = *m - *p;
  1077. slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1078. ldu2);
  1079. i__1 = *m - *p;
  1080. i__2 = *m - *p;
  1081. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1082. work[iorgqr], &lorgqr, &childinfo);
  1083. }
  1084. if (wantv1t && *q > 0) {
  1085. v1t[v1t_dim1 + 1] = 1.f;
  1086. i__1 = *q;
  1087. for (j = 2; j <= i__1; ++j) {
  1088. v1t[j * v1t_dim1 + 1] = 0.f;
  1089. v1t[j + v1t_dim1] = 0.f;
  1090. }
  1091. i__1 = *q - 1;
  1092. i__2 = *q - 1;
  1093. slacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[
  1094. (v1t_dim1 << 1) + 2], ldv1t);
  1095. i__1 = *q - 1;
  1096. i__2 = *q - 1;
  1097. i__3 = *q - 1;
  1098. sorglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1099. work[itauq1], &work[iorglq], &lorglq, &childinfo);
  1100. }
  1101. /* Simultaneously diagonalize X11 and X21. */
  1102. sbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &work[
  1103. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1104. v1t_offset], ldv1t, dum2, &c__1, &work[ib11d], &work[ib11e], &
  1105. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1106. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1107. /* Permute rows and columns to place zero submatrices in */
  1108. /* preferred positions */
  1109. if (*q > 0 && wantu2) {
  1110. i__1 = *q;
  1111. for (i__ = 1; i__ <= i__1; ++i__) {
  1112. iwork[i__] = *m - *p - *q + i__;
  1113. }
  1114. i__1 = *m - *p;
  1115. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1116. iwork[i__] = i__ - *q;
  1117. }
  1118. i__1 = *m - *p;
  1119. i__2 = *m - *p;
  1120. slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1121. }
  1122. } else if (r__ == *p) {
  1123. /* Case 2: R = P */
  1124. /* Simultaneously bidiagonalize X11 and X21 */
  1125. sorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1126. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1127. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1128. /* Accumulate Householder reflectors */
  1129. if (wantu1 && *p > 0) {
  1130. u1[u1_dim1 + 1] = 1.f;
  1131. i__1 = *p;
  1132. for (j = 2; j <= i__1; ++j) {
  1133. u1[j * u1_dim1 + 1] = 0.f;
  1134. u1[j + u1_dim1] = 0.f;
  1135. }
  1136. i__1 = *p - 1;
  1137. i__2 = *p - 1;
  1138. slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1139. u1_dim1 << 1) + 2], ldu1);
  1140. i__1 = *p - 1;
  1141. i__2 = *p - 1;
  1142. i__3 = *p - 1;
  1143. sorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[
  1144. itaup1], &work[iorgqr], &lorgqr, &childinfo);
  1145. }
  1146. if (wantu2 && *m - *p > 0) {
  1147. i__1 = *m - *p;
  1148. slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1149. ldu2);
  1150. i__1 = *m - *p;
  1151. i__2 = *m - *p;
  1152. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1153. work[iorgqr], &lorgqr, &childinfo);
  1154. }
  1155. if (wantv1t && *q > 0) {
  1156. slacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset],
  1157. ldv1t);
  1158. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1159. iorglq], &lorglq, &childinfo);
  1160. }
  1161. /* Simultaneously diagonalize X11 and X21. */
  1162. sbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &work[
  1163. iphi], &v1t[v1t_offset], ldv1t, dum1, &c__1, &u1[u1_offset],
  1164. ldu1, &u2[u2_offset], ldu2, &work[ib11d], &work[ib11e], &work[
  1165. ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[ib22d]
  1166. , &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1167. /* Permute rows and columns to place identity submatrices in */
  1168. /* preferred positions */
  1169. if (*q > 0 && wantu2) {
  1170. i__1 = *q;
  1171. for (i__ = 1; i__ <= i__1; ++i__) {
  1172. iwork[i__] = *m - *p - *q + i__;
  1173. }
  1174. i__1 = *m - *p;
  1175. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1176. iwork[i__] = i__ - *q;
  1177. }
  1178. i__1 = *m - *p;
  1179. i__2 = *m - *p;
  1180. slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1181. }
  1182. } else if (r__ == *m - *p) {
  1183. /* Case 3: R = M-P */
  1184. /* Simultaneously bidiagonalize X11 and X21 */
  1185. sorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1186. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1187. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1188. /* Accumulate Householder reflectors */
  1189. if (wantu1 && *p > 0) {
  1190. slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1191. sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1192. iorgqr], &lorgqr, &childinfo);
  1193. }
  1194. if (wantu2 && *m - *p > 0) {
  1195. u2[u2_dim1 + 1] = 1.f;
  1196. i__1 = *m - *p;
  1197. for (j = 2; j <= i__1; ++j) {
  1198. u2[j * u2_dim1 + 1] = 0.f;
  1199. u2[j + u2_dim1] = 0.f;
  1200. }
  1201. i__1 = *m - *p - 1;
  1202. i__2 = *m - *p - 1;
  1203. slacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1204. u2_dim1 << 1) + 2], ldu2);
  1205. i__1 = *m - *p - 1;
  1206. i__2 = *m - *p - 1;
  1207. i__3 = *m - *p - 1;
  1208. sorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[
  1209. itaup2], &work[iorgqr], &lorgqr, &childinfo);
  1210. }
  1211. if (wantv1t && *q > 0) {
  1212. i__1 = *m - *p;
  1213. slacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1214. ldv1t);
  1215. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1216. iorglq], &lorglq, &childinfo);
  1217. }
  1218. /* Simultaneously diagonalize X11 and X21. */
  1219. i__1 = *m - *q;
  1220. i__2 = *m - *p;
  1221. sbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], &
  1222. work[iphi], dum1, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1223. u2_offset], ldu2, &u1[u1_offset], ldu1, &work[ib11d], &work[
  1224. ib11e], &work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e]
  1225. , &work[ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &
  1226. childinfo);
  1227. /* Permute rows and columns to place identity submatrices in */
  1228. /* preferred positions */
  1229. if (*q > r__) {
  1230. i__1 = r__;
  1231. for (i__ = 1; i__ <= i__1; ++i__) {
  1232. iwork[i__] = *q - r__ + i__;
  1233. }
  1234. i__1 = *q;
  1235. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1236. iwork[i__] = i__ - r__;
  1237. }
  1238. if (wantu1) {
  1239. slapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]);
  1240. }
  1241. if (wantv1t) {
  1242. slapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1243. }
  1244. }
  1245. } else {
  1246. /* Case 4: R = M-Q */
  1247. /* Simultaneously bidiagonalize X11 and X21 */
  1248. i__1 = lorbdb - *m;
  1249. sorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1250. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1251. itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo)
  1252. ;
  1253. /* Accumulate Householder reflectors */
  1254. if (wantu1 && *p > 0) {
  1255. scopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1);
  1256. i__1 = *p;
  1257. for (j = 2; j <= i__1; ++j) {
  1258. u1[j * u1_dim1 + 1] = 0.f;
  1259. }
  1260. i__1 = *p - 1;
  1261. i__2 = *m - *q - 1;
  1262. slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1263. u1_dim1 << 1) + 2], ldu1);
  1264. i__1 = *m - *q;
  1265. sorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1266. iorgqr], &lorgqr, &childinfo);
  1267. }
  1268. if (wantu2 && *m - *p > 0) {
  1269. i__1 = *m - *p;
  1270. scopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1);
  1271. i__1 = *m - *p;
  1272. for (j = 2; j <= i__1; ++j) {
  1273. u2[j * u2_dim1 + 1] = 0.f;
  1274. }
  1275. i__1 = *m - *p - 1;
  1276. i__2 = *m - *q - 1;
  1277. slacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1278. u2_dim1 << 1) + 2], ldu2);
  1279. i__1 = *m - *p;
  1280. i__2 = *m - *p;
  1281. i__3 = *m - *q;
  1282. sorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2],
  1283. &work[iorgqr], &lorgqr, &childinfo);
  1284. }
  1285. if (wantv1t && *q > 0) {
  1286. i__1 = *m - *q;
  1287. slacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1288. ldv1t);
  1289. i__1 = *p - (*m - *q);
  1290. i__2 = *q - (*m - *q);
  1291. slacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) *
  1292. x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) *
  1293. v1t_dim1], ldv1t);
  1294. i__1 = -(*p) + *q;
  1295. i__2 = *q - *p;
  1296. slacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1]
  1297. , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t);
  1298. sorglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1299. iorglq], &lorglq, &childinfo);
  1300. }
  1301. /* Simultaneously diagonalize X11 and X21. */
  1302. i__1 = *m - *p;
  1303. i__2 = *m - *q;
  1304. sbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], &
  1305. work[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum1,
  1306. &c__1, &v1t[v1t_offset], ldv1t, &work[ib11d], &work[ib11e], &
  1307. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1308. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1309. /* Permute rows and columns to place identity submatrices in */
  1310. /* preferred positions */
  1311. if (*p > r__) {
  1312. i__1 = r__;
  1313. for (i__ = 1; i__ <= i__1; ++i__) {
  1314. iwork[i__] = *p - r__ + i__;
  1315. }
  1316. i__1 = *p;
  1317. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1318. iwork[i__] = i__ - r__;
  1319. }
  1320. if (wantu1) {
  1321. slapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]);
  1322. }
  1323. if (wantv1t) {
  1324. slapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1325. }
  1326. }
  1327. }
  1328. return;
  1329. /* End of SORCSD2BY1 */
  1330. } /* sorcsd2by1_ */