You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasq2.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__2 = 2;
  486. /* > \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc
  487. iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SLASQ2 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SLASQ2( N, Z, INFO ) */
  506. /* INTEGER INFO, N */
  507. /* REAL Z( * ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > SLASQ2 computes all the eigenvalues of the symmetric positive */
  514. /* > definite tridiagonal matrix associated with the qd array Z to high */
  515. /* > relative accuracy are computed to high relative accuracy, in the */
  516. /* > absence of denormalization, underflow and overflow. */
  517. /* > */
  518. /* > To see the relation of Z to the tridiagonal matrix, let L be a */
  519. /* > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
  520. /* > let U be an upper bidiagonal matrix with 1's above and diagonal */
  521. /* > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
  522. /* > symmetric tridiagonal to which it is similar. */
  523. /* > */
  524. /* > Note : SLASQ2 defines a logical variable, IEEE, which is true */
  525. /* > on machines which follow ieee-754 floating-point standard in their */
  526. /* > handling of infinities and NaNs, and false otherwise. This variable */
  527. /* > is passed to SLASQ3. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] N */
  532. /* > \verbatim */
  533. /* > N is INTEGER */
  534. /* > The number of rows and columns in the matrix. N >= 0. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in,out] Z */
  538. /* > \verbatim */
  539. /* > Z is REAL array, dimension ( 4*N ) */
  540. /* > On entry Z holds the qd array. On exit, entries 1 to N hold */
  541. /* > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
  542. /* > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
  543. /* > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
  544. /* > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
  545. /* > shifts that failed. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[out] INFO */
  549. /* > \verbatim */
  550. /* > INFO is INTEGER */
  551. /* > = 0: successful exit */
  552. /* > < 0: if the i-th argument is a scalar and had an illegal */
  553. /* > value, then INFO = -i, if the i-th argument is an */
  554. /* > array and the j-entry had an illegal value, then */
  555. /* > INFO = -(i*100+j) */
  556. /* > > 0: the algorithm failed */
  557. /* > = 1, a split was marked by a positive value in E */
  558. /* > = 2, current block of Z not diagonalized after 100*N */
  559. /* > iterations (in inner while loop). On exit Z holds */
  560. /* > a qd array with the same eigenvalues as the given Z. */
  561. /* > = 3, termination criterion of outer while loop not met */
  562. /* > (program created more than N unreduced blocks) */
  563. /* > \endverbatim */
  564. /* Authors: */
  565. /* ======== */
  566. /* > \author Univ. of Tennessee */
  567. /* > \author Univ. of California Berkeley */
  568. /* > \author Univ. of Colorado Denver */
  569. /* > \author NAG Ltd. */
  570. /* > \date December 2016 */
  571. /* > \ingroup auxOTHERcomputational */
  572. /* > \par Further Details: */
  573. /* ===================== */
  574. /* > */
  575. /* > \verbatim */
  576. /* > */
  577. /* > Local Variables: I0:N0 defines a current unreduced segment of Z. */
  578. /* > The shifts are accumulated in SIGMA. Iteration count is in ITER. */
  579. /* > Ping-pong is controlled by PP (alternates between 0 and 1). */
  580. /* > \endverbatim */
  581. /* > */
  582. /* ===================================================================== */
  583. /* Subroutine */ void slasq2_(integer *n, real *z__, integer *info)
  584. {
  585. /* System generated locals */
  586. integer i__1, i__2, i__3;
  587. real r__1, r__2;
  588. /* Local variables */
  589. logical ieee;
  590. integer nbig;
  591. real dmin__, emin, emax;
  592. integer kmin, ndiv, iter;
  593. real qmin, temp, qmax, zmax;
  594. integer splt;
  595. real dmin1, dmin2, d__, e, g;
  596. integer k;
  597. real s, t;
  598. integer nfail;
  599. real desig, trace, sigma;
  600. integer iinfo;
  601. real tempe, tempq;
  602. integer i0, i1, i4, n0, n1, ttype;
  603. extern /* Subroutine */ void slasq3_(integer *, integer *, real *, integer
  604. *, real *, real *, real *, real *, integer *, integer *, integer *
  605. , logical *, integer *, real *, real *, real *, real *, real *,
  606. real *, real *);
  607. real dn;
  608. integer pp;
  609. real deemin;
  610. extern real slamch_(char *);
  611. integer iwhila, iwhilb;
  612. real oldemn, safmin;
  613. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  614. real dn1, dn2;
  615. extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
  616. real dee, eps, tau, tol;
  617. integer ipn4;
  618. real tol2;
  619. /* -- LAPACK computational routine (version 3.7.0) -- */
  620. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  621. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  622. /* December 2016 */
  623. /* ===================================================================== */
  624. /* Test the input arguments. */
  625. /* (in case SLASQ2 is not called by SLASQ1) */
  626. /* Parameter adjustments */
  627. --z__;
  628. /* Function Body */
  629. *info = 0;
  630. eps = slamch_("Precision");
  631. safmin = slamch_("Safe minimum");
  632. tol = eps * 100.f;
  633. /* Computing 2nd power */
  634. r__1 = tol;
  635. tol2 = r__1 * r__1;
  636. if (*n < 0) {
  637. *info = -1;
  638. xerbla_("SLASQ2", &c__1, (ftnlen)6);
  639. return;
  640. } else if (*n == 0) {
  641. return;
  642. } else if (*n == 1) {
  643. /* 1-by-1 case. */
  644. if (z__[1] < 0.f) {
  645. *info = -201;
  646. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  647. }
  648. return;
  649. } else if (*n == 2) {
  650. /* 2-by-2 case. */
  651. if (z__[1] < 0.f) {
  652. *info = -201;
  653. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  654. return;
  655. } else if (z__[2] < 0.f) {
  656. *info = -202;
  657. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  658. return;
  659. } else if (z__[3] < 0.f) {
  660. *info = -203;
  661. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  662. return;
  663. } else if (z__[3] > z__[1]) {
  664. d__ = z__[3];
  665. z__[3] = z__[1];
  666. z__[1] = d__;
  667. }
  668. z__[5] = z__[1] + z__[2] + z__[3];
  669. if (z__[2] > z__[3] * tol2) {
  670. t = (z__[1] - z__[3] + z__[2]) * .5f;
  671. s = z__[3] * (z__[2] / t);
  672. if (s <= t) {
  673. s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f)));
  674. } else {
  675. s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
  676. }
  677. t = z__[1] + (s + z__[2]);
  678. z__[3] *= z__[1] / t;
  679. z__[1] = t;
  680. }
  681. z__[2] = z__[3];
  682. z__[6] = z__[2] + z__[1];
  683. return;
  684. }
  685. /* Check for negative data and compute sums of q's and e's. */
  686. z__[*n * 2] = 0.f;
  687. emin = z__[2];
  688. qmax = 0.f;
  689. zmax = 0.f;
  690. d__ = 0.f;
  691. e = 0.f;
  692. i__1 = *n - 1 << 1;
  693. for (k = 1; k <= i__1; k += 2) {
  694. if (z__[k] < 0.f) {
  695. *info = -(k + 200);
  696. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  697. return;
  698. } else if (z__[k + 1] < 0.f) {
  699. *info = -(k + 201);
  700. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  701. return;
  702. }
  703. d__ += z__[k];
  704. e += z__[k + 1];
  705. /* Computing MAX */
  706. r__1 = qmax, r__2 = z__[k];
  707. qmax = f2cmax(r__1,r__2);
  708. /* Computing MIN */
  709. r__1 = emin, r__2 = z__[k + 1];
  710. emin = f2cmin(r__1,r__2);
  711. /* Computing MAX */
  712. r__1 = f2cmax(qmax,zmax), r__2 = z__[k + 1];
  713. zmax = f2cmax(r__1,r__2);
  714. /* L10: */
  715. }
  716. if (z__[(*n << 1) - 1] < 0.f) {
  717. *info = -((*n << 1) + 199);
  718. xerbla_("SLASQ2", &c__2, (ftnlen)6);
  719. return;
  720. }
  721. d__ += z__[(*n << 1) - 1];
  722. /* Computing MAX */
  723. r__1 = qmax, r__2 = z__[(*n << 1) - 1];
  724. qmax = f2cmax(r__1,r__2);
  725. zmax = f2cmax(qmax,zmax);
  726. /* Check for diagonality. */
  727. if (e == 0.f) {
  728. i__1 = *n;
  729. for (k = 2; k <= i__1; ++k) {
  730. z__[k] = z__[(k << 1) - 1];
  731. /* L20: */
  732. }
  733. slasrt_("D", n, &z__[1], &iinfo);
  734. z__[(*n << 1) - 1] = d__;
  735. return;
  736. }
  737. trace = d__ + e;
  738. /* Check for zero data. */
  739. if (trace == 0.f) {
  740. z__[(*n << 1) - 1] = 0.f;
  741. return;
  742. }
  743. /* Check whether the machine is IEEE conformable. */
  744. /* IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */
  745. /* $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */
  746. /* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */
  747. /* some the test matrices of type 16. The double precision code is fine. */
  748. ieee = FALSE_;
  749. /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
  750. for (k = *n << 1; k >= 2; k += -2) {
  751. z__[k * 2] = 0.f;
  752. z__[(k << 1) - 1] = z__[k];
  753. z__[(k << 1) - 2] = 0.f;
  754. z__[(k << 1) - 3] = z__[k - 1];
  755. /* L30: */
  756. }
  757. i0 = 1;
  758. n0 = *n;
  759. /* Reverse the qd-array, if warranted. */
  760. if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) {
  761. ipn4 = i0 + n0 << 2;
  762. i__1 = i0 + n0 - 1 << 1;
  763. for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
  764. temp = z__[i4 - 3];
  765. z__[i4 - 3] = z__[ipn4 - i4 - 3];
  766. z__[ipn4 - i4 - 3] = temp;
  767. temp = z__[i4 - 1];
  768. z__[i4 - 1] = z__[ipn4 - i4 - 5];
  769. z__[ipn4 - i4 - 5] = temp;
  770. /* L40: */
  771. }
  772. }
  773. /* Initial split checking via dqd and Li's test. */
  774. pp = 0;
  775. for (k = 1; k <= 2; ++k) {
  776. d__ = z__[(n0 << 2) + pp - 3];
  777. i__1 = (i0 << 2) + pp;
  778. for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
  779. if (z__[i4 - 1] <= tol2 * d__) {
  780. z__[i4 - 1] = 0.f;
  781. d__ = z__[i4 - 3];
  782. } else {
  783. d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
  784. }
  785. /* L50: */
  786. }
  787. /* dqd maps Z to ZZ plus Li's test. */
  788. emin = z__[(i0 << 2) + pp + 1];
  789. d__ = z__[(i0 << 2) + pp - 3];
  790. i__1 = (n0 - 1 << 2) + pp;
  791. for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
  792. z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
  793. if (z__[i4 - 1] <= tol2 * d__) {
  794. z__[i4 - 1] = 0.f;
  795. z__[i4 - (pp << 1) - 2] = d__;
  796. z__[i4 - (pp << 1)] = 0.f;
  797. d__ = z__[i4 + 1];
  798. } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] &&
  799. safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
  800. temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
  801. z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
  802. d__ *= temp;
  803. } else {
  804. z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
  805. pp << 1) - 2]);
  806. d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
  807. }
  808. /* Computing MIN */
  809. r__1 = emin, r__2 = z__[i4 - (pp << 1)];
  810. emin = f2cmin(r__1,r__2);
  811. /* L60: */
  812. }
  813. z__[(n0 << 2) - pp - 2] = d__;
  814. /* Now find qmax. */
  815. qmax = z__[(i0 << 2) - pp - 2];
  816. i__1 = (n0 << 2) - pp - 2;
  817. for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
  818. /* Computing MAX */
  819. r__1 = qmax, r__2 = z__[i4];
  820. qmax = f2cmax(r__1,r__2);
  821. /* L70: */
  822. }
  823. /* Prepare for the next iteration on K. */
  824. pp = 1 - pp;
  825. /* L80: */
  826. }
  827. /* Initialise variables to pass to SLASQ3. */
  828. ttype = 0;
  829. dmin1 = 0.f;
  830. dmin2 = 0.f;
  831. dn = 0.f;
  832. dn1 = 0.f;
  833. dn2 = 0.f;
  834. g = 0.f;
  835. tau = 0.f;
  836. iter = 2;
  837. nfail = 0;
  838. ndiv = n0 - i0 << 1;
  839. i__1 = *n + 1;
  840. for (iwhila = 1; iwhila <= i__1; ++iwhila) {
  841. if (n0 < 1) {
  842. goto L170;
  843. }
  844. /* While array unfinished do */
  845. /* E(N0) holds the value of SIGMA when submatrix in I0:N0 */
  846. /* splits from the rest of the array, but is negated. */
  847. desig = 0.f;
  848. if (n0 == *n) {
  849. sigma = 0.f;
  850. } else {
  851. sigma = -z__[(n0 << 2) - 1];
  852. }
  853. if (sigma < 0.f) {
  854. *info = 1;
  855. return;
  856. }
  857. /* Find last unreduced submatrix's top index I0, find QMAX and */
  858. /* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */
  859. emax = 0.f;
  860. if (n0 > i0) {
  861. emin = (r__1 = z__[(n0 << 2) - 5], abs(r__1));
  862. } else {
  863. emin = 0.f;
  864. }
  865. qmin = z__[(n0 << 2) - 3];
  866. qmax = qmin;
  867. for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
  868. if (z__[i4 - 5] <= 0.f) {
  869. goto L100;
  870. }
  871. if (qmin >= emax * 4.f) {
  872. /* Computing MIN */
  873. r__1 = qmin, r__2 = z__[i4 - 3];
  874. qmin = f2cmin(r__1,r__2);
  875. /* Computing MAX */
  876. r__1 = emax, r__2 = z__[i4 - 5];
  877. emax = f2cmax(r__1,r__2);
  878. }
  879. /* Computing MAX */
  880. r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5];
  881. qmax = f2cmax(r__1,r__2);
  882. /* Computing MIN */
  883. r__1 = emin, r__2 = z__[i4 - 5];
  884. emin = f2cmin(r__1,r__2);
  885. /* L90: */
  886. }
  887. i4 = 4;
  888. L100:
  889. i0 = i4 / 4;
  890. pp = 0;
  891. if (n0 - i0 > 1) {
  892. dee = z__[(i0 << 2) - 3];
  893. deemin = dee;
  894. kmin = i0;
  895. i__2 = (n0 << 2) - 3;
  896. for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
  897. dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
  898. if (dee <= deemin) {
  899. deemin = dee;
  900. kmin = (i4 + 3) / 4;
  901. }
  902. /* L110: */
  903. }
  904. if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] *
  905. .5f) {
  906. ipn4 = i0 + n0 << 2;
  907. pp = 2;
  908. i__2 = i0 + n0 - 1 << 1;
  909. for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
  910. temp = z__[i4 - 3];
  911. z__[i4 - 3] = z__[ipn4 - i4 - 3];
  912. z__[ipn4 - i4 - 3] = temp;
  913. temp = z__[i4 - 2];
  914. z__[i4 - 2] = z__[ipn4 - i4 - 2];
  915. z__[ipn4 - i4 - 2] = temp;
  916. temp = z__[i4 - 1];
  917. z__[i4 - 1] = z__[ipn4 - i4 - 5];
  918. z__[ipn4 - i4 - 5] = temp;
  919. temp = z__[i4];
  920. z__[i4] = z__[ipn4 - i4 - 4];
  921. z__[ipn4 - i4 - 4] = temp;
  922. /* L120: */
  923. }
  924. }
  925. }
  926. /* Put -(initial shift) into DMIN. */
  927. /* Computing MAX */
  928. r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax);
  929. dmin__ = -f2cmax(r__1,r__2);
  930. /* Now I0:N0 is unreduced. */
  931. /* PP = 0 for ping, PP = 1 for pong. */
  932. /* PP = 2 indicates that flipping was applied to the Z array and */
  933. /* and that the tests for deflation upon entry in SLASQ3 */
  934. /* should not be performed. */
  935. nbig = (n0 - i0 + 1) * 100;
  936. i__2 = nbig;
  937. for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
  938. if (i0 > n0) {
  939. goto L150;
  940. }
  941. /* While submatrix unfinished take a good dqds step. */
  942. slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
  943. nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
  944. dn1, &dn2, &g, &tau);
  945. pp = 1 - pp;
  946. /* When EMIN is very small check for splits. */
  947. if (pp == 0 && n0 - i0 >= 3) {
  948. if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
  949. sigma) {
  950. splt = i0 - 1;
  951. qmax = z__[(i0 << 2) - 3];
  952. emin = z__[(i0 << 2) - 1];
  953. oldemn = z__[i0 * 4];
  954. i__3 = n0 - 3 << 2;
  955. for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
  956. if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
  957. tol2 * sigma) {
  958. z__[i4 - 1] = -sigma;
  959. splt = i4 / 4;
  960. qmax = 0.f;
  961. emin = z__[i4 + 3];
  962. oldemn = z__[i4 + 4];
  963. } else {
  964. /* Computing MAX */
  965. r__1 = qmax, r__2 = z__[i4 + 1];
  966. qmax = f2cmax(r__1,r__2);
  967. /* Computing MIN */
  968. r__1 = emin, r__2 = z__[i4 - 1];
  969. emin = f2cmin(r__1,r__2);
  970. /* Computing MIN */
  971. r__1 = oldemn, r__2 = z__[i4];
  972. oldemn = f2cmin(r__1,r__2);
  973. }
  974. /* L130: */
  975. }
  976. z__[(n0 << 2) - 1] = emin;
  977. z__[n0 * 4] = oldemn;
  978. i0 = splt + 1;
  979. }
  980. }
  981. /* L140: */
  982. }
  983. *info = 2;
  984. /* Maximum number of iterations exceeded, restore the shift */
  985. /* SIGMA and place the new d's and e's in a qd array. */
  986. /* This might need to be done for several blocks */
  987. i1 = i0;
  988. n1 = n0;
  989. L145:
  990. tempq = z__[(i0 << 2) - 3];
  991. z__[(i0 << 2) - 3] += sigma;
  992. i__2 = n0;
  993. for (k = i0 + 1; k <= i__2; ++k) {
  994. tempe = z__[(k << 2) - 5];
  995. z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7];
  996. tempq = z__[(k << 2) - 3];
  997. z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k <<
  998. 2) - 5];
  999. }
  1000. /* Prepare to do this on the previous block if there is one */
  1001. if (i1 > 1) {
  1002. n1 = i1 - 1;
  1003. while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.f) {
  1004. --i1;
  1005. }
  1006. if (i1 >= 1) {
  1007. sigma = -z__[(n1 << 2) - 1];
  1008. goto L145;
  1009. }
  1010. }
  1011. i__2 = *n;
  1012. for (k = 1; k <= i__2; ++k) {
  1013. z__[(k << 1) - 1] = z__[(k << 2) - 3];
  1014. /* Only the block 1..N0 is unfinished. The rest of the e's */
  1015. /* must be essentially zero, although sometimes other data */
  1016. /* has been stored in them. */
  1017. if (k < n0) {
  1018. z__[k * 2] = z__[(k << 2) - 1];
  1019. } else {
  1020. z__[k * 2] = 0.f;
  1021. }
  1022. }
  1023. return;
  1024. /* end IWHILB */
  1025. L150:
  1026. /* L160: */
  1027. ;
  1028. }
  1029. *info = 3;
  1030. return;
  1031. /* end IWHILA */
  1032. L170:
  1033. /* Move q's to the front. */
  1034. i__1 = *n;
  1035. for (k = 2; k <= i__1; ++k) {
  1036. z__[k] = z__[(k << 2) - 3];
  1037. /* L180: */
  1038. }
  1039. /* Sort and compute sum of eigenvalues. */
  1040. slasrt_("D", n, &z__[1], &iinfo);
  1041. e = 0.f;
  1042. for (k = *n; k >= 1; --k) {
  1043. e += z__[k];
  1044. /* L190: */
  1045. }
  1046. /* Store trace, sum(eigenvalues) and information on performance. */
  1047. z__[(*n << 1) + 1] = trace;
  1048. z__[(*n << 1) + 2] = e;
  1049. z__[(*n << 1) + 3] = (real) iter;
  1050. /* Computing 2nd power */
  1051. i__1 = *n;
  1052. z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1);
  1053. z__[(*n << 1) + 5] = nfail * 100.f / (real) iter;
  1054. return;
  1055. /* End of SLASQ2 */
  1056. } /* slasq2_ */